|
|
Design and Optimization of Relative Excitation Parameters for a New Strip Transverse Flux Induction Heating Apparatus |
Wang Youhua1,2, Wu Jiancheng1,2, Li Bin1,2, Liu Chengcheng1,2 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300132 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300132 China |
|
|
Abstract A new transverse flux induction heating device(TFIH) was proposed and designed, and its excitation parameters were optimized since the original TFIH has the disadvantages of high magnetic flux leakage, high magnetic resistance and low magnetic permeability in the magnetic circuit. The new TFIH has two additional yokes in the end of iron core based on the original TFIH. The eddy current and temperature field of both the original and new proposed TFIH devices were obtained under the same excitation condition through the improved magnetic-thermal coupling method. The calculated results show that the effective value of alternating magnetic flux in the proposed TFIH is higher and magnetic flux leakage is lower than that in the original TFIH. Thus, when heating state is stable, a higher temperature rising and a more even temperature distribution on the strip surface at the outlet of the new TFIH can be obtained. The heating efficiency is better than that of the original device. Meanwhile, considering that the proposed TFIH still has the disadvantage of uneven temperature distribution on the strip, the temperature distribution of the strip surface under different magnitude and frequency parameters of excitation current is calculated, and the best magnitude and frequency are obtained. It can be concluded that the uniform temperature distribution on the surface of strip is the best and its temperature relative nonuniformity is only 2.9%, when the magnitude and frequency of excitation current is 1 000A and 500Hz.
|
Received: 10 July 2018
Published: 28 February 2020
|
|
|
|
|
[1] Favennec Y, Labbe V, Bay F.Induction heating processes optimization a general control approach[J]. Journal of Computational Physics, 2003, 187(1): 68-94. [2] 吴德会, 何天府, 王晓红, 等. 感应电能传输中矩形螺线线圈互感耦合的解析建模与分析[J]. 电工技术学报, 2018, 33(3): 680-688. Wu Dehui, He Tianfu, Wang Xiaohong, et al.Analytical modeling and analysis of mutual inductance coupling of rectangular spiral coils in inductive power transfer[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 680-688. [3] 孙建亮, 邱丑武, 毕雪峰, 等. 感应加热与传统加热模式大型筒节加热效果研究[J]. 机械工程学报, 2017, 53(10): 25-33. Sun Jianliang, Qiu Chouwu, Bi Xuefeng, et al.Study on heating effect of heavy cylinder with induction heating and conventional heating[J]. Journal of Mechanical Engineering, 2017, 53(10): 25-33. [4] 王晓娜, 方旭, 唐波, 等. 脉冲式感应加热电源频率跟踪技术的研究与实现[J]. 电工技术学报, 2018, 33(18): 4357-4364. Wang Xiaona, Fang Xu, Tang Bo, et al.Research and implementation of a frequency tracking technology for the pulsed induction heating power[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(18): 4357-4364. [5] 刘刚, 李炀, 陈垣, 等. 基于电磁-热耦合模型的架空导线温度分布和径向温差的计算与实验验证[J]. 电力系统保护与控制, 2018, 46(7): 7-13. Liu Gang, Li Yang, Chen Yuan, et al.Calculation and experiment verification on temperature distribution and radial temperature of overhead transmission line based on electromagnetic-thermal coupling fields[J]. Power System Protection and Control, 2018, 46(7): 7-13. [6] 刘赟, 俞集辉, 程鹏. 基于电磁-热耦合场的架空输电线路载流量分析与计算[J]. 电力系统保护与控制, 2015, 43(9): 28-34. Liu Yun, Yu Jihui, Cheng Peng.Analysis and calculation on the ampacity of overhead transmission lines based on electromagnetic-thermal coupling fields[J]. Power System Protection and Control, 2015, 43(9): 28-34. [7] 黎镇浩, 曹全梁, 赖智鹏, 等. 电流丝法在电磁成形线圈电流和工件电磁力计算中的应用[J]. 电工技术学报, 2018, 33(18): 4181-4190. Li Zhenhao, Cao Quanliang, Lai Zhipeng, et al.Application of current filament method on the calculation of current and force in electromagnetic forming[J]. Transactions of China Electrotechnical Society, 2018, 33(18): 4181-4190. [8] 李江涛, 孙义, 李擎宇, 等. 大电流开关柜温度分布特性的影响因素分析[J]. 电气技术, 2018, 19(9): 12-18. Li Jiangtao, Sun Yi, Li Qingyu, et al.Analysis of influencing factors on temperature distribution characteristics of high current switchgear[J]. Electrical Engineering, 2018, 19(9): 12-18. [9] 张宇娇, 汪振亮, 徐彬昭, 等. 瞬态电磁-温度场耦合计算中自适应时间步长研究[J]. 电工技术学报, 2018, 33(19): 4468-4475. Zhang Yujiao, Wang Zhenliang, Xu Binzhao, et al.Research on the adaptive time step in transient calculation of coupled electromagnetic and thermal fields[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4468-4475. [10] 李宜伦, 王泽济, 杨仕友. 热轧带钢厂边部加热涡流-温度场仿真分析[J]. 电工技术学报, 2013, 28(增刊2): 105-110. Li Yilun, Wang Zeji, Yang Shiyou.Numerical simulation of the eddy current and temperature fields in the edge heating hot strip mill[J]. Transactions of China Electrotechnical Society, 2013, 28(S2): 105-110. [11] 刘刚, 张瀚方, 池骋, 等. 二维电磁场-流体-温度场耦合仿真节点数据映射算法研究[J]. 电工技术学报, 2018, 33(1): 148-157. Liu Gang, Zhang Hanfang, Chi Cheng, et al.Research on node data mapping algorithm for the 2D coupling electromagnetic-fluid-thermal fields[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 148-157. [12] 侯晓光, 李俊, 周月明. 宽幅带材横磁感应加热技术的发展[J]. 宝钢技术, 2016, 34(3): 7-15. Hou Xiaoguang, Li Jun, Zhou Yueming.Deve- lopment of transverse flux induction heating for wide rang size strip[J]. Baosteel Technology, 2016, 34(3): 7-15. [13] 徐德超, 李俊, 孟庆格, 等. BH-IF钢超快速加热退火工艺[J]. 东北大学学报(自然科学版), 2014, 35(10): 1412-1416. Xu Dechao, Li Jun, Meng Qingge, et al.Ultra-rapid heating annealing process of BH-IF steel[J]. Journal of Northeastern University(Natural Science), 2014, 35(10): 1412-1416. [14] 郭建龙, 胡坤太, 仇圣桃, 等. 连铸方坯感应加热数值模拟分析[J]. 特种铸造及有色合金, 2015, 35(2): 184-188. Guo Jianlong, Hu Kuntai, Qiu Shengtao, et al.Numerical simulation of continuous casting square billet during induction heating process[J]. Special Casting & Nonferrous Alloys, 2015, 35(2): 184-188. [15] Pang Lingling, Wang Youhua, Chen Tanggong.New development of traveling wave induction heating[J]. IEEE Transactions on Applied Superconductivity, 2010, 20(3): 1013-1016. [16] 赵前哲, 柳亦兵, 刘衍平, 等. 铁磁性材料感应加热过程的数值分析[J]. 材料热处理学报, 2012, 33(3): 151-155. Zhao Qianzhe, Liu Yibing, Liu Yanping.Numerical analysis for induction heating process of ferromagnetic materials[J]. Transactions of Materials and Heat Treatment, 2012, 33(3): 151-155. [17] 孙于. 横向磁通感应加热器优化与耦合分析方法研究[D]. 天津: 河北工业大学, 2014. [18] Wang Youhua, Wang Junhua, Pang Lingling, et al. An advanced double-layer combined windings transverse flux system for thin strip induction heating[J]. Journal of Applied Physics, 2011, 109(7): 07E511. [19] 孙于, 汪友华, 杨晓光, 等. 新型横向磁通感应加热线圈[J]. 电工技术学报, 2014, 29(4): 85-90. Sun Yu, Wang Youhua, Yang Xiaoguang, et al.A novel coil shape for transverse flux induction heating[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 85-90. [20] 孙于, 汪友华, 杨晓光, 等. 横向磁通感应线圈结构研究[J]. 电工技术学报, 2014, 29(增刊1): 8-14. Sun Yu, Wang Youhua, Yang Xiaoguang, et al.Research on coil shape for transverse flux induction heating[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 8-14. [21] 陈堂功. 遗传算法及其应用于电磁装置优化设计的研究[D]. 天津: 河北工业大学, 2006. [22] 富坤. 支持向量机及其应用于感应加热装置优化设计的研究[D]. 天津: 河北工业大学, 2007. [23] 汪友华, 郭春福, 陈龙, 等. 横向磁通感应加热带材温度场的计算分析[J]. 金属热处理, 2017, 42(11): 178-182. Wang Youhua, Guo Chunfu, Chen Long, et al.Calculation and analysis of temperature field of steel strip with transverse flux induction heating[J]. Heat Treatment of Metals, 2017, 42(11): 178-182. |
|
|
|