|
|
Fuzzy Self-Tuning Adaptive Integral Backstepping Control for Permanent Magnet Synchronous Motor |
Wang Weiran1,2, Wu Jiaxin1, Zhang Yi1, Wei Haifeng1, Ge Huilin1 |
1. School of Electronics and Information Jiangsu University of Science and TechnologyZhenjiang 212000 China; 2. College of Automation Engineering Nanjing University of Aeronautics and Astronautics Nanjing 211106 China |
|
|
Abstract To improve the dynamic response of permanent magnet synchronous motor(PMSM) servo system and solve the problem of internal parameters perturbation and external load disturbance, a fuzzy self-tuning adaptive integral backstepping control method for PMSM is proposed. The dq axis current error integral terms are introduced into the control law of the adaptive backstepping controller(ABC) to form the adaptive current error integral backstepping controller(AIBC). It can track the given dq axis current accurately and improve the robustness of the dq axis current control to the internal parameter perturbation of the system. On this basis, the fuzzy reasoning module used in the AIBC is designed. According to the motor speed error and its rate of change, the system can adjust the speed feedback gain and adaptive gain online adaptively, further improving the dynamic response performance of the system. Experimental results verify the effectiveness and feasibility of the control method.
|
Received: 14 December 2018
Published: 28 February 2020
|
|
|
|
|
[1] 张海洋, 许海平, 方程, 等. 基于负载转矩观测器的直驱式永磁同步电机新型速度控制器设计[J]. 电工技术学报, 2018, 33(13): 2923-2934. Zhang Haiyang, Xu Haiping, Fang Cheng, et al.Design of a novel speed controller for direct-drive permanent magnet synchronous motor based on load torque observer[J]. Transactions of China Electro- technical Society, 2018, 33(13): 2923-2934. [2] 刘宁, 夏长亮, 周湛清, 等. 基于比例增益补偿的永磁同步电机转速平滑控制[J]. 电工技术学报, 2018, 33(17): 4007-4015. Liu Ning, Xia Changliang, Zhou Zhanqing, et al.Smooth speed control for permanent magnet synchronous motor using proportional gain compensation[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 4007-4015. [3] 崔家瑞, 高江峰, 张波, 等. 永磁同步电机滑模变结构鲁棒控制[J]. 电机与控制学报, 2016, 20(5): 84-89. Cui Jiarui, Gao Jiangfeng, Zhang Bo, et al.Robust control of synchronous motor based on sliding mode variable structure[J]. Electric Machines and Control, 2016, 20(5): 84-89. [4] Aghili F.Optimal feedback linearization control of interior PM synchronous motors subject to time- varying operation conditions minimizing power loss[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5414-5421. [5] 曾岳南, 曾祥彩, 周斌, 等. 永磁同步电机传动系统电流环非线性自抗扰控制器的设计与稳定性分析[J]. 电工技术学报, 2017, 32(17):135-143. Zeng Yuenan, Zeng Xiangcai, Zhou Bin, et al.Nonlinear active disturbance rejection controller design for current loop of PMSM drive system and its stability analysis[J]. Transactions of China Electro- technical Society, 2017, 32(17): 135-143. [6] 赵希梅, 吴勇慷. 基于自适应修正拉盖尔递归神经网络的永磁直线同步电机反推控制[J]. 电工技术学报, 2018, 33(10): 2392-2399. Zhao Ximei, Wu Yongkang.Backstepping control based on adaptive modified laguerre recurrent neural network for permanent magnet linear synchronous motor[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2392-2399. [7] Kokotovic P V.The joy feedback: nonlinear and adaptive[J]. Control Systems Magazine, 1992, 12(3): 7-17. [8] Kokotovic P V, Krstic M, Kanellakopoulos I.Backstepping to passivity: recursive design of adaptive systems[C]//IEEE Conference on Decision and Control, Tucson, USA, 1992: 3276-3280. [9] Cai Jianping, Wen Changyun, Su Hongye, et al.Adaptive backstepping control for a class of nonlinear systems with non- triangular structural uncertainties[J]. IEEE Transactions on Automatic Control, 2016, 62(10): 5220-5226. [10] Zhou Jing, Wen Changyun, Zhang Ying.Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Transactions on Automatic Control, 2004, 49(10): 1751-1759. [11] Linares-Flores J, García-Rodríguez C, Sira-Ramírez H, et al.Robust backstepping tracking controller for low-speed PMSM positioning system: design, analysis, and implementation[J]. IEEE Transactions on Industrial Informatics, 2015, 11(5): 1130-1141. [12] Morawiec M.The adaptive backstepping control of permanent magnet synchronous motor supplied by current source inverter[J]. IEEE Transactions on Industrial Informatics, 2012, 9(2): 1047-1055. [13] 张兴华, 唐其太. 考虑参数和负载不确定性的内置式永磁同步电机自适应反步控制[J]. 控制与决策, 2016, 31(8): 1509-1512. Zhang Xinghua, Tang Qitai.Adaptive backstepping control of interior permanent magnet synchronous motors considering parameter and load uncertainties[J]. Control and Decision, 2016, 31(8): 1509-1512. [14] 刘栋良, 崔言飞, 赵晓丹, 等. 基于反推控制的永磁同步电动机速度的模糊控制[J]. 电工技术学报, 2014, 29(11): 38-44. Liu Dongliang, Cui Yanfei, Zhao Xiaodan, et al.Fuzzy control of speed of permanent magnet synchronous motor based on backstepping control[J]. Transactions of China Electrotechnical Society, 2014, 29(11): 38-44. [15] Lin Chih-Min, Li Hsin-Yi.Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems[J]. IEEE Transactions on Fuzzy Systems, 2013, 22(4): 791-802. [16] Liu Sheng, Guo Xiaojie, Zhang Lanyong.Robust adaptive backstepping sliding mode control for six-phase permanent magnet synchronous motor using recurrent wavelet fuzzy neural network[J]. IEEE Access, 2017, 5: 14502-14515. [17] Lin Faa-Jeng, Teng Litao, Chen Chengyan, et al.FPGA-based adaptive backstepping control system using RBFN for linear induction motor drive[J]. IET Electric Power Applications, 2008, 2(6): 325-340. [18] 杨明. 船舶电力推进永磁同步电机非线性反步控制器设计与优化研究[D]. 大连: 大连海事大学, 2012. [19] 花熙文. 永磁同步电机的模糊反步自适应调速策略研究[D]. 南京: 南京航空航天大学, 2016. |
|
|
|