|
|
Transmission Line Model and Analysis Method Considering the Time and Space Distribution Characteristics of Meteorology |
Wang Yanling1, Mo Yang1, Han Xueshan2, Meng Xiangxing3, Niu Zhiqiang4 |
1. School of Mechanical Electrical and Information Engineering Shandong University(Weihai) Weihai 264209 China; 2. School of Electrical Engineering Shandong University Jinan 250061 China; 3. National Grid Heilongjiang Electric Power Co. Ltd Harbin 150090 China; 4. National Grid Weihai Power Supply Company Weihai 264209 China |
|
|
Abstract The meteorological data along the overhead line vary in time and space, which has an important influence on the operating state of the system. Based on the thermal balance equation of CIGRE standard, this paper iteratively solves the conductor temperature of transmission lines. Through the real weather data, the seasonal variation of the meteorological data of a 220 kV line in Shandong area and the spatial variation of meteorological data along a 500 kV line in Dongbei area are analyzed by examples. Considering the time distribution characteristics of meteorological parameters, a seasonal model is given. Considering the space distribution, the mean value model, the weight average value model and the line segmentation model are established. Further, based on the relationship between conductor temperature and line parameters, the system power flow model considering the time and space distribution of meteorological data and the decomposition coordination solution are established. Through the power flow calculation and network transmission capability analysis, it shows that the conductor temperature of the overhead line has significant time and space variation characteristics. Considering the time and space distribution characteristics of meteorological parameters can effectively improve the accuracy of power grid state analysis.
|
Received: 21 December 2018
Published: 12 February 2020
|
|
|
|
|
[1] 张刘春. ±1100kV特高压直流输电线路防雷保护[J]. 电工技术学报, 2018, 33(19): 4611-4617. Zhang Liuchun.Lightning protection of ±1100kV UHVDC transmission line[J]. Transactions of China Electrotechnical Society, 2018, 33(19): 4611-4617. [2] 黎鹏, 阮江军, 黄道春, 等. 模拟山火条件下导线-板间隙击穿特性影响因素分析[J]. 电工技术学报, 2018, 33(1): 195-201. Li Peng, Ruan Jiangjun, Huang Daochun, et al.Influence factors analysis of the conductor-plane gap breakdown characteristic under simulation forest fire condition[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 195-201. [3] 陈珩. 电力系统稳态分析 [M]. 3版. 北京: 中国电力出版社, 2007. [4] 张辉, 韩学山, 王艳玲. 架空输电线路运行载流量分析[J]. 电网技术, 2008, 32(14): 31-35. Zhang Hui, Han Xueshan, Wang Yanling.Analysis on current carrying capacity of overhead lines being operated[J]. Power System Technology, 2008, 32(14): 31-35. [5] 倪识远, 胡志坚, 傅晨宇. 单回不对称输电线路分布参数的测量方法[J]. 电工技术学报, 2018, 33(5): 1086-1095. Ni Shiyuan, Hu Zhijian, Fu Chenyu.A method for measuring the distributed parameters of single-circuit asymmetric transmission line[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1086-1095. [6] 张启平, 钱之银. 输电线路实时动态增容的可行性研究[J]. 电网技术, 2005, 33(7): 18-21. Zhang Qiping, Qian Zhiyin.Study on real-time dynamic capacity increase of transmission line[J]. Power System Technology, 2005, 33(7): 18-21. [7] 周海松, 陈哲, 张健, 等. 应用气象数值预报技术提高输电线路动态载流量能力[J]. 电网技术, 2016, 40(7): 2175-2178. Zhou Haisong, Chen Zhe, Zhang Jian, et al.Application of meteorological numerical forecast technology for improving transmission line capability[J]. Power System Technology, 2016, 40(7): 2175-2178. [8] 陈德辉, 神学顺. 新一代数值预报系统GRAPES研究进展[J]. 应用气象学报, 2006, 17(6): 773-777. Chen Dehui, Shen Xueshun.Recent progress on GRAPES research and application[J]. Journal of Applied Meterological Science, 2006, 17(6): 773-777. [9] 殷治军. 基于气象数据的架空输电线路热载荷能力研究[D]. 济南: 山东大学, 2017. [10] 王艳玲, 严志杰, 梁立凯, 等. 气象数据驱动的架空线路载流的动态定值分析[J]. 电网技术, 2018, 42(1): 315-322. Wang Yanling, Yan Zhijie, Liang Likai, et al.Dynamic rating analysis of overhead line loadability driven by meteorological data[J]. Power System Technology, 2018, 42(1): 315-322. [11] Cecchi V, Knudson M, Miu K.System impacts of temperature-dependent transmission line models[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2300-2308. [12] Cecchi V, Leger A, Miu K, et al.Incorporating temperature variations into transmission-line models[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2189-2196. [13] Jupe S, Kadar D, Murphy G, et al.Application of a dynamic thermal rating system to a 132kV distribution network[C]//IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, England, 2011: 1-8. [14] 徐青松, 季洪献, 侯炜, 等. 监测导线温度实现输电线路增容新技术[J]. 电网技术, 2006, 30(增刊): 171-176. Xu Qingsong, Ji Hongxian, Hou Wei, et al.The novel technique of transmission line’s capacity increase by means of monitoring conductor’s temperature[J]. Power System Technology, 2006, 30(S): 171-176. [15] Greenwood D, Gentle J, Smyers K.A comparison of real-time thermal rating systems in the U.S. and the U.K.[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1849-1858. [16] 丁希亮, 韩学山, 张辉, 等. 电热协调潮流及输电线路温度变化过程分析[J]. 中国电机工程学报, 2008, 28(19): 138-144. Ding Xiliang, Han Xueshan, Zhang Hui, et al.Analysis on electrothermal coordination power flow and transmission line temperature variation process[J]. Proceedings of the CSEE, 2008, 28(19): 138-144. [17] 王孟夏, 韩学山, 黄金鑫, 等. 计及电缆热特性的电热耦合潮流计算[J]. 电力系统自动化, 2016, 40(11): 73-79. Wang Mengxia, Han Xueshan, Huang Jinxin, et al.Electro-thermal power flow calculation considering thermal properties of cable[J]. Automation of Electric Power Systems, 2016, 40(11): 73-79. [18] 董晓明, 梁军, 韩学山, 等. 计及输电线路温度变化的连续潮流模型与计算[J]. 电力系统保护与控制, 2012, 40(23): 36-41. Dong Xiaoming, Liang Jun, Han Xueshan, et al.Model and calculation of continuation power flow considering change of transmission line temperature[J]. Power System Protection and Control, 2012, 40(23): 36-41. [19] 王艳玲, 梁立凯, 韩学山, 等. 计及动态热定值的配电网可靠性分析[J]. 中国电机工程学报, 2017, 37(5): 1400-1417. Wang Yanling, Liang Likai, Han Xueshan, et al.Distribution network reliability analysis considering dynamic thermal rating[J]. Proceedings of the CSEE, 2017, 37(5): 1400-1417. [20] 冯凯, 应展峰, 陈汹, 等. 计及线路热惯性效应的模型预测控制安全经济调度模型[J]. 电工技术学报, 2018, 33(8): 1875-1883. Feng Kai, Ying Zhanfeng, Chen Xiong, et al.Model predictive control security economic dispatch model considering transmission line thermal inertia effect[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1875-1883. [21] 胡剑, 熊小伏, 王建. 基于热网络模型的架空输电线路径向和周向温度计算方法[J]. 电工技术学报, 2019, 34(1): 139-152. Hu Jian, Xiong Xiaofu, Wang Jian.Radial and circumferential temperature calculation method of overhead transmission lines based on thermal network model[J]. Transactions of China Electrotechnical Society, 2019, 34(1): 139-152. [22] CIGRE. Thermal behavior of overhead conductors[R]. CIGRE WG12, ELECTRA(144), 1992. |
|
|
|