|
|
Research on Direct Power Control for Brushless Doubly-Fed Wind Power Generator with a Novel Hybrid Rotor |
Su Xiaoying1,2, Zhu Liancheng2, Jin Shi1, Zhang Fengge1, Sun Dan1 |
1. School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; 2. School of Electronic and Information Engineering University of Science and Technology Liaoning Anshan 114051 China; 3. College of Electrical Engineering Zhejiang University Hangzhou 310027 China |
|
|
Abstract Because of no brushes and slip rings, brushless doubly-fed generators (BDFGs) have some advantages of maintenance-free thus higher reliability, smaller partially-rated converter and so on, which make them very possibly as a competitor for the doubly-fed induction generator and permanent magnet synchronous generator commonly used in wind energy conversion systems (WECS). In this paper, the direct power control (DPC) strategy for the BDFG with a novel hybrid rotor is presented, where according to the real and reactive power errors and sector number of the control winding flux vector, the variable-speed constant-frequency (VSCF) maximum power point tracking (MPPT) and unity power factor control (UPFC) can be implemented by applying the proper voltage space vector obtained with the traditional lookup-table on the machine side converter of control winding. Finally, the correctness, reliability and effectiveness of the proposed DPC for the novel BDFG are all be proved by the detailed simulation results and experimental measurements based on Matlab/Simulink and 8/4-25kW prototype laboratory test rig.
|
Received: 14 June 2019
Published: 12 February 2020
|
|
|
|
|
[1] Jovanović M G, Chaal H.Wind power applications of doubly-fed reluctance generators with parameter-free hysteresis control[J]. Energy Conversion and Management, 2017, 134(15): 399-409. [2] 贾磊, 王雪帆, 熊飞. 700 kW船用轴带无刷双馈发电机的设计与测试[J]. 电工技术学报, 2016, 31(15): 32-42. Jia Lei, Wang Xuefan, Xiong Fei.Design and test of a 700 kW ship shaft brushless doubly fed generator[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 32-42. [3] 张凤阁, 王凤祥, 徐隆亚. 磁阻和笼型转子无刷双馈电机的统一等效电路和转矩公式[J]. 中国电机工程学报, 1999, 19(11): 28-31. Zhang Fengge, Wang Fengxiang, Xu Longya.The equivalent circuit and torque formula of doubly fed brushless machine with reluctance and cage rotor[J]. Proceedings of the CSEE, 1999, 19(11): 28-31. [4] 蒋晓东, 张凤阁, 周党生, 等. 双定子笼障转子无刷双馈发电机冷却空气流变特性数值分析[J]. 电工技术学报, 2019, 34(3): 466-473. Jiang Xiaodong, Zhang Fengge, Zhou Dangsheng, et al.Numerical analysis of cooling air flow characteristic for double stator cage-barrier rotor brushless doubly-fed generator[J]. Transactions of China Electrotechnical Society, 2019, 34(3): 466-473. [5] 姜云磊, 程明, 王青松, 等. 不平衡负载下双定子无刷双馈发电机独立运行控制策略[J]. 电工技术学报, 2018, 33(5): 998-1006. Jiang Yunlei, Cheng Ming, Wang Qingsong, et al.Control strategy of stand-alone brushless doubly-fed induction generator system under unbalanced loads[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 998-1006. [6] 韩力, 高强, 罗辞勇, 等. 不同转子结构无刷双馈电机的运行特性对比[J]. 电机与控制学报, 2010, 14(3): 9-14, 20. Han Li, Gao Qiang, Luo Ciyong, et al.Comparasion on the performance of brushless doubly-fed machine with different rotor structures[J]. Electric Machines and Control, 2010, 14(3): 9-14, 20. [7] Njiri J G, Soffker D.State-of-the-art in wind turbine control:trends and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 377-393. [8] Tohidi S, Oraee H, Zolghadri M R, et al.Analysis and enhancement of low-voltage ride-through capability of brushless doubly fed induction generator[J]. IEEE Transactions on Industrial Electronics, 2013, 60(3): 1146-1155. [9] Xu Longya, Guan Bo, Liu Huijuan, et al.Design and control of a high-efficiency doubly-fed brushless machine for wind power generator application[C]// 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, Georgia, 2010: 2409-2416. [10] Dorrell D G, Jovanović M.On the possibilities of using a brushless doubly-fed reluctance generator in a 2MW wind turbine[C]//2008 IEEE Industry Applications Society Annual Meeting, Edmonton, AB, Canada, 2008: 1-8. [11] 张凤阁, 王秀平, 贾广隆, 等. 无刷双馈电机复合转子结构参数的优化设计[J]. 电工技术学报, 2014, 29(1): 77-84. Zhang Fengge, Wang Xiuping, Jia Guanglong, et al.Optimum design for composite rotor structural parameters of brushless doubly fed machines[J]. Transactions of China Electrotechnical Society, 2014, 29(1): 77-84. [12] 张凤阁, 王秀平, 于思洋, 等. 不同转子结构无刷双馈电动机转子耦合能力与运行性能的对比分析与实验研究[J]. 中国电机工程学报, 2016, 36(10): 2816-2826. Zhang Fengge, Wang Xiuping, Yu Siyang, et al.Comparative analysis and experimental research of coupling capability and operating characteristics for brushless doubly fed motors with different rotor structures characteristics[J]. Proceedings of the CSEE, 2016, 36(10): 2816-2826. [13] Zhang Fengge, Yu Siyang, Wang Yutao, et al.Design and performance comparisons of brushless doubly fed generators with different rotor structures[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 631-640. [14] Ademi S, Jovanović M G, Hasan M.Control of brushless doubly-fed reluctance generators for wind energy conversion systems[J]. IEEE Transactions on Energy Conversion, 2015, 30(2): 596-604. [15] Ademi S, Jovanović M G.Vector control methods for brushless doubly fed reluctance machines[J]. IEEE Transactions on Industrial Electronics, 2015, 62(1): 96-104. [16] Chaal H, Jovanović M G.Toward a generic torque and reactive power controller for doubly fed machines[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 113-121. [17] Sarasola I, Poza J, Rodriguez M A, et al.Direct torque control design and experimental evaluation for the brushless doubly fed machine[J]. Energy Conversion and Management, 2011, 52(2): 1226-1234. [18] Chaal H, Jovanović M G.Practical implementation of sensorless torque and reactive power control of doubly fed machines[J]. IEEE Transactions on Industrial Electronic, 2012, 59(6): 2645-2653. [19] 赵荣理, 张爱玲, 田慕琴, 等. 笼型转子无刷双馈发电机的间接功率控制[J]. 电机与控制学报, 2019, 23(9): 1-8. Zhao Rongli, Zhang Ailing, Tian Muqin, et al.Indirect power control strategy for brushless doubly-fed induction generator[J]. Electric Machines and Control, 2019, 23(9): 1-8. |
|
|
|