|
|
Comprehensive Security Correction Strategy Based on Second-Order Cone Programming Considering Multiple Fast Control Measures |
Lin Tao1, Bi Ruyu1, Chen Rusi2, Zhou Xueming2, Xu Xialing3 |
1. School of Electrical Engineering Wuhan University Wuhan 430072 China; 2. State Grid Hubei Electric Power Research Institute Wuhan 430077 China; 3. Central China Electric Power Dispatching and Communication Centre Wuhan 430077 China |
|
|
Abstract High proportion of renewable energy sources and power market makes the operation state more variable, so the security correction schemes(SCS) for typical operation mode made offline may be conservative. In addition, in traditional SCS, fast control measures are not considered to avoid further overload during the control process, such as transmission switching(TS), thyristor controlled series compensator(TCSC) control, or multi-terminal direct current(MTDC) power modulation. Thus, a comprehensive security correction(SC) strategy considering the above three fast control measures is proposed based on second-order cone programming (SOCP) to quickly obtain accurate SCS according to current operation mode. Specifically, to ensure the accuracy of SCS, the power flow model with changeable topologically, TCSC and MTDC is constructed based on mixed integer SOCP, and the corresponding SC optimization model is constructed. To ensure the rapidity of solution, a heuristic double acceleration strategy is proposed. Firstly, a heuristic line selection strategy based on the comprehensive influence index of line outage is proposed, thus to reduce the search space. Then, based on the proposed index, an accelerating strategy to induce the objective function is proposed, which further improves the computational efficiency while also guarantee accuracy. Based on the modified IEEE 57 bus system, the effectiveness and accuracy of the proposed SC strategy and its superiority in terms of less load shedding and high solution efficiency are verified.
|
Received: 10 October 2018
Published: 17 January 2020
|
|
|
|
|
[1] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 30(17): 1-12. Xu Dianguo, Liu Yuchao, Wu Jian.Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 1-12. [2] 吴杰, 王志新. 多端柔性直流输电系统的改进下垂控制策略[J]. 电工技术学报, 2017, 32(20): 241-250. Wu Jie, Wang Zhixin.Improved droop control strategy for multi-terminal voltage source converter-HVDC[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 241-250. [3] Sahraei-Ardakani M, Hedman K W.Day-ahead corrective adjustment of FACTS reactance: a linear programming approach[J]. IEEE Transactions on Power Systems, 2016, 31(4): 2867-2875. [4] 李明扬, 方连航, 赵千川, 等. 用于电网安全校正的传输线切换策略研究综述[J]. 电网技术, 2017, 41(8): 2506-2513. Li Mingyang, Fang Lianhang, Zhao Qianchuan, et al.Review on corrective transmission line switching[J]. Power System Technology, 2017, 41(8): 2506-2513. [5] Li Xingpeng, Balasubramanian P, Sahraei-Ardakani M, et al.Real-time contingency analysis with corrective transmission switching[J]. IEEE Transactions on Power Systems, 2017, 32(4): 2604-2617. [6] Abdi-Khorsand M, Sahraei-Ardakani M, Al-Abdullah Y M. Corrective transmission switching for N-1-1 contingency analysis[J]. IEEE Transactions on Power Systems, 2017, 32(2): 1606-1615. [7] Switching solutions, PJM, norristown, PA, USA [EB/ OL]. https://www.pjm.com/markets-and-operations/ etools/oasis/system-information/switching-solutions. aspx, 2018-10-08. [8] 牟颖, 张保会, 薄志谦. 防止输电断面联锁过载的快速控制算法[J]. 电力系统自动化, 2017, 41(3): 39-45. Mou Ying, Zhang Baohui, Bo Zhiqian.Fast control algorithm for preventing cascading overload on transmission section[J]. Automation of Electric Power Systems, 2017, 41(3): 39-45. [9] 任建文, 何培成, 何宸. 基于虚拟控制单元与启发式搜索的线路过载紧急控制策略[J]. 电力系统自动化, 2017, 41(3): 33-38. Ren Jianwen, He Peicheng, He Chen.Emergency control strategy against line overload based on virtual control units and heuristic search[J]. Automation of Electric Power Systems, 2017, 41(3): 33-38. [10] 刘静文. 输电断面快速搜索及防联锁过载有功校正控制策略研究[D]. 秦皇岛: 燕山大学, 2016. [11] 毕如玉, 林涛, 陈汝斯, 等. 交直流混合电力系统的安全校正策略[J]. 电工技术学报, 2016, 31(9): 50-57. Bi Ruyu, Lin Tao, Chen Rusi, et al.The security correction strategy in AC and DC hybrid power system[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 50-57. [12] 任建文, 魏俊姣, 谷雨峰. 基于多目标粒子群优化算法的联锁跳闸预防控制[J]. 电力自动化设备, 2016, 46(7): 53-59. Ren Jianwen, Wei Junjiao, Gu Yufeng.Preventive control based on multi-objective particle swarm optimization algorithm for cascading trips[J]. Electric Power Automation Equipment, 2016, 46(7): 53-59. [13] Bi Ruyu, Lin Tao, Chen Rusi, et al.Alleviation of post-contingency overloads by SOCP based corrective control considering TCSC and MTDC[J]. IET Generation, Transmission & Distribution, 2018, 12(9): 2155-2164. [14] Ding Tao, Zhao Chaoyu.Robust optimal transmission switching with the consideration of corrective actions for N-k contingencies[J]. IET Generation, Transmission & Distribution, 2016, 10(13): 3288-3295. [15] Dehghanian P, Wang Yaping, Gurrala G, et al.Flexible implementation of power system corrective topology control[J]. Electric Power Systems Research, 2015, 128: 79-89. [16] Balasubramanian P, Hedman K W.Real-time corrective switching in response to simultaneous contingencies[J]. Journal of Energy Engineering, 2015, 141(1): B4014003. [17] Lyon J D, Maslennikov S, Sahraei-Ardakani M, et al.Harnessing flexible transmission: corrective transmission switching for ISO-NE[J]. IEEE Power and Energy Technology Systems Journal, 2016, 3(3): 109-118. [18] Kocuk B, Dey S S, Sun X A.Strong SOCP relaxations for the optimal power flow problem[J]. Operations Research, 2016, 64(6): 1177-1196. [19] Farivar M, Low S H.Branch flow model: relaxations and convexification-part I[J]. IEEE Transactions on Power Systems, 2013, 28(3): 2554-2564. [20] 李静, 戴文战, 韦巍. 基于混合整数凸规划的含风力发电机组配电网无功补偿优化配置[J]. 电工技术学报, 2016, 31(3): 121-129. Li Jing, Dai Wenzhan, Wei Wei.A mixed integer convex programming for optimal reactive power compensation in distribution system with wind turbines[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 121-129. [21] 张艺镨, 艾小猛, 方家琨, 等. 基于极限场景的两阶段含分布式电源的配网无功优化[J]. 电工技术学报, 2018, 33(2): 380-389. Zhang Yipu, Ai Xiaomeng, Fang Jiakun, et al.Two-stage reactive power optimization for distribution network with distributed generation based on extreme scenarios[J]. Transactions of China Electrotechnical Society, 2018, 33(2): 380-389. [22] Baradar M, Hesamzadeh M R, Ghandhari M.Second-order cone programming for optimal power flow in VSC-type AC-DC grids[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4282-4291. [23] 顾雪平, 张尚, 王涛, 等. 安全域视角下的有功安全校正优化控制方法[J]. 电力系统自动化, 2017, 41(18): 17-24. Gu Xueping, Zhang Shang, Wang Tao, et al.Optimization control strategy for active power correction from perspective of security region[J]. Automation of Electric Power Systems, 2017, 41(18): 17-24. [24] 赵峰, 孙宏斌, 张伯明. 基于电气分区的输电断面及其自动发现[J]. 电力系统自动化, 2011, 35(5): 42-46. Zhao Feng, Sun Hongbin, Zhang Boming.Electrical zone division based automatic discovery of flowgates[J]. Automation of Electric Power Systems, 2011, 35(5): 42-46. [25] Power systems test case archive-57 bus power flow test case [EB/OL]. https://labs.ece.uw.edu/pstca/pf57/ pg_tca57 bus.htm,2018-10-08. |
|
|
|