|
|
Protection Scheme Based on the Identification of Equivalent Leakage Inductance Against Turn-to-Turn Fault of Magnetically Controlled Shunt Reactor |
Liu Xiaoxiao1, Zheng Tao1, Huang Ting2 |
1. State Key Laboratory of Alternate Electrical Power System With Renewable Energy Source North China Electric Power University Beijing 102206 China; 2. Nanchang Power Supply Company State Grid Jiangxi Electric Power Company Nanchang 330002 China |
|
|
Abstract Due to the advancement of large-scale continuously regulated capacity, magnetically controlled shunt reactor (MCSR) is one of the key elements used in EHV/UHV transmission systems for reactive power compensation and overvoltage suppression. The turn-to-turn fault is a common fault of MCSR, however due to its special core structure and winding connection mode, there is a complex electromagnetic coupling relationship between the fault winding and the non-faulty winding, which makes the accurate identification of the turn-to-turn fault more challenging. In order to solve this problem, a novel protection scheme against turn-to-turn fault of MCSR based on the identification of equivalent leakage inductance was proposed. Based on the equivalent circuit of voltage loops of power winding and control winding and compensation winding, parameter identification model of the corresponding equivalent leakage inductance was derived, and then solved by recursive least squares method. A new protection scheme based on the variation rate of equivalent leakage inductance parameters and the difference of three-phase equivalent leakage inductance was constructed. In addition, the scheme can further detect the fault winding based on the magnitude relationship of the equivalent leakage inductance parameters after the fault occurs. The effectiveness of the protection scheme was verified through simulation analysis based on Matlab/Simulink.
|
Received: 17 November 2018
Published: 17 January 2020
|
|
|
|
|
[1] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14. Xiao Xiangning.Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 1-14. [2] 周强, 汪宁渤, 何世恩, 等. 高弃风弃光背景下中国新能源发展总结及前景探究[J]. 电力系统保护与控制, 2017, 45(10): 146-154. Zhou Qiang, Wang Ningbo, He Shien, et al.Summary and prospect of China's new energy development under the background of high abandoned new energy power[J]. Power System Protection and Control, 2017, 45(10): 146-154. [3] 雷晰, 邓占锋, 徐桂芝, 等. 磁控型可控并联电抗器研究与实践[J]. 中国电机工程学报, 2014, 34(增刊1): 225-231. Lei Xi, Deng Zhanfeng, Xu Guizhi, et al.Research and practice of magnetically controlled shunt reactor[J]. Proceedings of the CSEE, 2014, 34(S1): 225-231. [4] 冼冀, 程汉湘, 岑正君. 三相磁阀式可控电抗器综述[J] . 电气技术, 2014, 15(1): 1-3, 15. Xian Ji, Cheng Hanxiang, Cen Zhengjun.Overview of three-phase magnetic valve type controlled reactor[J]. Electrical Engineering, 2014, 15(1): 1-3, 15. [5] 安振, 白保东, 马云飞, 等. 750kV磁控式可控并联电抗器的研制与应用[J]. 变压器, 2016, 53(6): 1-4. An Zhen, Bai Baodong, Ma Yunfei, et al.Development and application of 750kV magnetically controlled shunt reactor[J]. Transformer, 2016, 53(6): 1-4. [6] 安振, 陈志伟, 白保东, 等. 基于磁状态调节机制的可控电抗器分析设计[J]. 电工技术学报, 2017, 32(20): 213-221. An Zhen, Chen Zhiwei, Bai Baodong, et al.A novel controllable reactor design and analysis based on magnetic state regulation mechanism[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 213-221. [7] Zheng Tao, Zhao Yanjie.Microprocessor-based protection scheme for high-voltage magnetically controlled shunt reactors[C]//12th IET International Conference on Developments in Power System Protection, Copenhagen, Denmark, 2014, DOI:10. 1049/cp.2014.0147. [8] 滕予非, 吴杰, 张真源, 等. 基于离群点检测的高压并联电抗器本体电流互感器测量异常故障在线诊断[J]. 电工技术学报, 2019, 34(11): 2405-2414. Teng Yufei, Wu Jie, Zhang Zhenyuan, et al.Online identification of measurement abnormality fault based on outlier detection for current transformer in high voltage shunt reactor[J]. Transactions of China Electrotechnical Society, 2019, 34(11): 2405-2414. [9] 潘超, 米俭, 王格万, 等. 基于场路耦合的变压器绕组匝间短路电磁谐响应分析方法[J]. 电工技术学报, 2019, 34(4): 673-682. Pan Chao, Mi Jian, Wang Gewan, et al.Electromagnetic harmonic response analysis method of inter-turn short circuit in transformer winding based on field circuit coupling[J]. Transactions of China Electrotechnical Society, 2019, 34(4): 673-682. [10] Zheng Tao, Zhao Yanjie, Jin Ying, et al.Design and analysis on the turn-to-turn fault protection scheme for the control winding of a magnetically controlled shunt reactor[J]. IEEE Transactions on Power Delivery, 2015, 30(2): 967-975. [11] 郑涛, 赵彦杰, 金颖. 特高压磁控式并联电抗器保护配置方案及其性能分析[J]. 电网技术, 2014, 38(5): 1396-1401. Zheng Tao, Zhao Yanjie, Jin Ying.Research on protective configuration for a UHV magnetically controlled shunt reactor[J]. Power System Technology, 2014, 38(5): 1396-1401. [12] 邹卫华. 微机超高压并联电抗器保护的研究[D]. 北京: 华北电力大学, 2007. [13] 郑涛, 赵彦杰, 金颖, 等. 磁控式并联电抗器控制绕组匝间故障分析及保护方案[J]. 电力系统自动化, 2014, 38(10): 95-99. Zheng Tao, Zhao Yanjie, Jin Ying, et al.Analysis on and protective schemes against control winding turn-to-turn fault of magnetic controllable shunt reactors[J]. Automation of Electric Power Systems, 2014, 38(10): 95-99. [14] 郑涛, 刘校销. 基于控制绕组电流基频分量的磁控式并联电抗器匝间保护新原理[J]. 电网技术, 2018, 43(8): 3016-3024. Zheng Tao, Liu Xiaoxiao.New principle of protection scheme based on fundamental component of control winding currents against turn-to-turn fault of magnetically controlled shunt reactor[J]. Power System Technology, 2018, 43(8): 3016-3024. [15] 范茜勉. 电抗器匝间短路的影响及检测方法[D]. 郑州: 华北水利水电大学, 2016. [16] 陈柏超. 新型可控饱和电抗器理论及应用[M]. 武汉: 武汉水利电力大学出版社, 1999. [17] 陶力维, 郑涛, 赵彦杰. 基于网侧绕组串联的磁控式可控高抗控制绕组结构改进[J]. 电力系统自动化, 2015, 39(19): 101-106. Tao Liwei, Zheng Tao, Zhao Yanjie.Physical design of control windings for a three-phase magnetically controlled shunt reactor based on series-connected working windings[J]. Automation of Electric Power Systems, 2015, 39(19): 101-106. [18] 潘超, 金明权, 蔡国伟, 等. 基于漏感辨识的变压器交直流混合运行保护方法[J]. 电工技术学报, 2018, 33(4): 771-780. Pan Chao, Jin Mingquan, Cai Guowei, et al.Protection for transformer in AC-DC hybrid operation mode based on leakage inductance identification[J]. Transactions of China Electrotechnical Society, 2018, 33(4): 771-780. [19] 郑涛, 王增平, 翁汉琍, 等. 超/特高压变压器差动保护关键技术与新原理[M]. 北京: 科学出版社, 2017. [20] 沈善德. 电力系统辨识[M]. 北京: 清华大学出版社, 1993. [21] 赵海森, 杜中兰, 刘晓芳, 等. 基于递推最小二乘法与模型参考自适应法的鼠笼式异步电机转子电阻在线辨识方法[J]. 中国电机工程学报, 2014, 34(30): 5386-5394. Zhao Haisen, Du Zhonglan, Liu Xiaofang, et al.An on-line identification method for rotor resistance of squirrel cage induction motors based on recursive least square method and model reference adaptive system[J]. Proceedings of the CSEE, 2014, 34(30): 5386-5394. [22] 陈涵, 刘会金, 李大路, 等. 可变遗忘因子递推最小二乘法对时变参数测量[J]. 高电压技术, 2008, 34(7): 1474-1477. Chen Han, Liu Huijin, Li Dalu, et al.Time-varying parameters measurement by least square method with variable forgetting factors[J]. High Voltage Engineering, 2008, 34(7): 1474-1477. [23] 赵建文, 付周兴. 电力系统微机保护[M]. 北京: 机械工业出版社, 2016. [24] 邓占锋, 王轩, 周飞, 等. 超高压磁控式并联电抗器仿真建模方法[J]. 中国电机工程学报, 2008, 28(36): 108-113. Deng Zhanfeng, Wang Xuan, Zhou Fei, et al.Modeling of extra-high voltage magnetically controlled shunt reactor[J]. Proceeding of the CSEE, 2008, 28(36): 108-113. [25] 王轩, 邓占锋, 于坤山, 等. 超高压磁控式并联电抗器稳态特性[J]. 中国电机工程学报, 2008, 28(33): 104-109. Wang Xuan, Deng Zhanfeng, Yu Kunshan, et al.Steady-state characteristics of extra-high voltage magnetically controlled shunt reactor[J]. Proceeding of the CSEE, 2008, 28(33): 104-109. [26] 娄宝磊, 李晓明. 基于双饱和变压器模型的磁控电抗器仿真新方法[J]. 高压电器, 2017, 53(4): 191-196. Lou Baolei, Li Xiaoming.New method for simulation of magnetically controlled reactor based on double saturated transformers model[J]. High Voltage Apparatus, 2017, 53(4): 191-196. [27] IEEE Standard C37.109-2006 IEEE Guide for the Protection of Shunt Reactors[S]. 2007. |
|
|
|