|
|
Investigation on Measurement of Stress Dependent Vector Magnetic Properties of Non-Oriented Electrical Steel Sheet |
Zhang Dianhai, Jia Mengfan, Ren Ziyan, Zhang Yanli |
School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China |
|
|
Abstract A novel stress dependent vector magnetic properties measurement method of electrical steel sheet is proposed. The tension or compressive stress is applied by Linear Actuator along rolling and transverse direction. The uniformity of magnetic flux density is guaranteed by optimizing the dimension of magnetic yoke and its arrangement so that the measurement accuracy can be improved. In order to measure the vector magnetic flux density and magnetic field intensity, B probe and double compound H-coil are introduced and assembled inside a frame of bakelite. According to pointing’s theorem, the total specific iron loss of electrical steel sheet under different magnetization conditions can be calculated. Based on the proposed method, the vector magnetic properties of different magnetization angles, axial ratio and magnetic flux density level of the specified non-oriented electrical steel are measured respectively by applying tension or compressive stress along magnetization direction. According to the measurement results, the evolution rule of stress dependent vector magnetic properties of electrical steel sheet is summarized.
|
Received: 04 July 2018
Published: 02 January 2020
|
|
Corresponding Authors:
国家自然科学基金(51707125)、辽宁省博士启动基金(201601165)和辽宁省高等学校创新人才支持计划(LR2017060)资助项目
|
|
|
|
[1] 王天煜, 温福强, 张凤阁, 等. 兆瓦级高速永磁电机转子多场耦合强度分析[J]. 电工技术学报, 2018, 33(19): 4508-4516. Wang Tianyu, Wen Fuqiang, Zhang Fengge, et al.Analysis of multi-field coupling strength for MW high-speed permanent magnet machine[J]. Transa- ctions of China Electrotechnical Society, 2018, 33(19): 4508-4516. [2] 张琦, 李增亮, 董祥伟, 等. 水下电机损耗加载方式及温度场耦合分析[J]. 电工技术学报, 2018, 33(5): 1007-1014. Zhang Qi, Li Zengliang, Dong Xiangwei, et al.Study of the loss loading method and coupling analysis of temperature distribution of the underwater motor[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1007-1014. [3] 陈俊全, 王东, 陈志华, 等. 面向舰船装备的电工软磁材料精细模拟技术综述[J]. 电工技术学报, 2017, 32(22): 166-175. Chen Junquan, Wang Dong, Chen Zhihua, et al.Review of precise modeling technology of electrical soft magnetic material applied in vessel equipment[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 166-175. [4] 杨庆新, 李永建. 先进电工磁性材料特性与应用发展研究综述[J]. 电工技术学报, 2016, 31(20): 1-12. Yang Qingxin, Li Yongjian.Characteristics and developments of advanced magnetic materials in electrical engineering: a review[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 1-12. [5] 马伟明, 王东, 程思为, 等. 高性能电机系统的共性基础科学问题与技术发展前沿[J]. 中国电机工程学报, 2016, 36(8): 2025-2035. Ma Weiming, Wang Dong, Cheng Siwei, et al.Common basic scientific problems and development of leading-edge technology of high performance motor system[J]. Proceedings of the CSEE, 2016, 36(8): 2025-2035. [6] Chen Junquan, Wang Dong, Jiang Yapeng, et al.Examination of temperature-dependent iron loss models using a stator core[J]. IEEE Transactions on Magnetics, 2018, 54(11): 8208307. [7] Kai Y, Zeze Shingo, Todaka T, et al.Magnetic characteristic analysis and measurement of vector magnetic property of a non-oriented electrical steel sheet under high magnetic flux condition[J]. IEEE Transactions on Magnetics, 2013, 49(5): 1981-1984. [8] Wanjiku J G, Pillay P.Design considerations of 2-D magnetizers for high flux density measurements[C]// Energy Conversion Congress and Exposition, Pittsburgh, PA, USA, 2014: 3629-3638. [9] Zurek S, Meydan T.Rotational power losses and vector loci under controlled high flux density and magnetic field in electrical steel sheets[J]. IEEE Transactions on Magnetics, 2006, 42(10): 2815-2817. [10] 陈龙, 汪友华, 赵浛宇, 等. 超微晶合金旋转磁特性测量用励磁装置的设计与优化[J]. 电工技术学报, 2016, 31(22): 19-27. Chen Long, Wang Youhua, Zhao Hanyu, et al.Design and optimization of a magnetizer for high frequency rotational magnetic characterization for nanocry- stalline alloy[J]. Transactions of China Electro- technical Society, 2016, 31(22): 19-27. [11] 龚园. 应力对电工钢片磁致伸缩特性的影响研究[M]. 沈阳: 沈阳工业大学, 2017. [12] 石文敏. 应力及工作环境对电动汽车用电工钢性能的影响[D]. 武汉: 武汉科技大学, 2016. [13] 柳超, 邓飞, 杨福平, 等. 压应力对新能源汽车电机无取向硅钢片磁性能的影响[J]. 汽车工艺与材料, 2016(2): 40-44. Liu Chao, Deng Fei, Yang Fuping, et al.Effects of compressive stress on magnetic properties of non-oriented silicon steel sheet of new energy automobile[J]. Automobile Technology & Material, 2016(2): 40-44. [14] Ding Xiaofeng, Ren Suping, Xiong Yanwen, et al.2-D magnetic properties measurement system for electrical steel sheets considering laminated direction mechanical stress[J]. IEEE Transactions on Magnetics, 2017, 53(10): 1-11. [15] Kai Y, Tsuchida Y, Todaka T, et al.Influence of biaxial stress on vector magnetic properties and 2-D magnetostriction of a non-oriented electrical steel sheet under alternating magnetic flux conditions[J]. IEEE Transactions on Magnetics, 2014, 50(4): 1-4. [16] Kai Y, Tsuchida Y, Todaka T, et al.Influence of stress on vector magnetic property under rotating magnetic flux conditions[J]. IEEE Transactions on Magnetics, 2011, 48(4): 1421-1424. [17] Bernard L, Daniel L.Effect of stress on magnetic hysteresis losses in a switched reluctance motor: application to stator and rotor shrink fitting[J]. IEEE Transactions on Magnetics, 2015, 51(9): 1-13. |
|
|
|