|
|
Robust Optimal Scheduling for Active Distribution Network Based on Improved Uncertain Boundary |
Ye Chang1,2, Miao Shihong1,2, Li Yaowang1,2, Li Chao1,2, Xu Bin3 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. Hubei Electric Power Security and High Efficiency Key Laboratory School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 3. Electric Power Research Institute of State Grid Anhui Electric Power Company Hefei 230601 China |
|
|
Abstract In view of the uncertainty of renewable energy generations (REGs) in active distribution network (ADN), an adjustable robust optimal scheduling strategy was proposed for ADN based on improved uncertain boundary. Firstly, adjustable robust optimization method was introduced and a robust optimization economic scheduling model was established for ADN which contains compressed air energy storage system and flexible loads. Through linear duality theory and Lagrange transformation, the robust optimization model with uncertain variables was turned into mixed integer optimization problems, which contains only certain variables and can be solved by conventional solutions. Meanwhile, a decision making method for the price of robustness was proposed based on an improved uncertain boundary. Then quantitative analysis was also done for the maximum confidence of constraints with uncertain variables. The proposed improved boundary improves the conservativeness of the existing robust boundary and has better solution characteristics. Finally, The results illustrate the availability and reasonability of the proposed strategy.
|
Received: 06 July 2018
Published: 12 October 2019
|
|
|
|
|
[1] 刘东, 张弘, 王建春. 主动配电网技术研究现状综述[J]. 电力工程技术, 2017, 36(4): 2-7. Liu Dong, Zhang Hong, Wang Jianchun.Review on the state of the art of active distribution network technology research[J]. Electric Power Engineering Technology, 2017, 36(4): 2-7. [2] 林小雨, 江岳文. 考虑风电出力偏差和调度经济性的风电接纳水平优化[J]. 福州大学学报: 自然科学版, 2016, 44(5): 680-687. Lin Xiaoyu, Jiang Yuewen.Wind power accommodation level optimization in consideration of output deviation and economy of scheduling[J]. Journal of Fuzhou University: Natural Science Edition, 2016, 44(5): 680-687. [3] 朱祥祥, 黄崇鑫, 岳东, 等. 基于区间不确定性的微网有功-无功联合优化调度[J]. 电力系统自动化, 2016, 40(15): 39-46. Zhu Xiangxiang, Huang Chongxin, Yue Dong, et al.Active-reactive power combined optimal dispatch for microgrids based on interval uncertainty[J]. Automation of Electric Power System, 2016, 40(15): 39-46. [4] 段翩, 朱建全, 刘明波. 基于双层模糊机会约束规划的虚拟电厂优化调度[J]. 电工技术学报, 2016, 31(9): 58-67. Duan Pian, Zhu Jianquan, Liu Mingbo.Optimal dispatch of virtual power plant based on bi-level fuzzy chance constrained programming[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 58-67. [5] 赵冬梅, 殷加玞. 考虑源荷双侧不确定性的模糊随机机会约束优化目标规划调度模型[J]. 电工技术学报, 2018, 33(5): 1076-1085. Zhao Dongmei, Yin Jiafu.Fuzzy random chance constrained preemptive goal programming scheduling model considering source-side and load-side uncertainty[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1076-1085. [6] 董雷, 孟天骄, 陈乃仕, 等. 采用马尔科夫链-多场景技术的交直流主动配电网优化调度[J]. 电力系统自动化, 2018, 42(5): 147-153. Dong Lei, Meng Tianjiao, Chen Naishi, et al.Optimized scheduling of AC/DC hybrid active distribution network using markov chains and multiple scenarios technique[J]. Automation of Electric Power System, 2018, 42(5): 147-153. [7] 高红均, 刘俊勇, 魏震波, 等. 主动配电网分层鲁棒规划模型及其求解方法[J]. 中国电机工程学报, 2017, 37(5): 1389-1400. Gao Hongjun, Liu Junyong, Wei Zhenbo, et al.A bi-level robust planning model of active distribution network and its solution method[J]. Proceedings of CSEE, 2017, 37(5): 1389-1400. [8] 王鲁浩, 李岐强, 丁然, 等. 可再生能源微网鲁棒多目标优化调度[J]. 电工技术学报, 2017, 32(5): 184-192. Wang Luhao, Li Qiqiang, Ding Ran, et al.Robust multi-objective optimization scheduling of micro-grids with renewable energy[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 184-192. [9] 罗毅, 邵周策, 张磊, 等. 考虑风电不确定性和气网运行约束的鲁棒经济调度和备用配置[J]. 电工技术学报, 2018, 33(11): 2456-2467. Luo Yi, Shao Zhouce, Zhang Lei, et al.Robust economic dispatch and reserve configuration considering wind uncertainty and gas network constraints[J]. Transactions of China Electrotechnical Society, 2018, 33(11): 2456-2467. [10] Jeyakumar V, Li G Y, Srisatkunarajah S.Strong duality for robust minimax fractional programming problems[J]. European Journal of Operational Research, 2013, 228(2): 331-336. [11] 李斯, 周任军, 童小娇, 等. 基于盒式集合鲁棒优化的风电并网最大装机容量[J]. 电网技术, 2011, 35(12): 208-213. Li Si, Zhou Renjun, Tong Xiaojiao, et al.Robust optimization with box set for maximum installed capacity of wind farm connected to grid[J]. Power System Technology, 2011, 35(12): 208-213. [12] Liu Sidong, Jian Jinbao, Wang Yuanyuan, et al.A robust optimization approach to wind farm diversification[J]. International Journal of Electrical Power & Energy System, 2013, 53(53): 409-415. [13] 周任军, 刘志勇, 闵雄帮, 等. 不确定性优化方法在电力系统研究中的应用[J]. 电力科学与技术学报, 2014, 29(2): 21-29. Zhou Renjun, Liu Zhiyong, Min Xiongbang, et al.A review on application of uncertainty optimization method in power systems[J]. Journal of Electric Power Science and Technology, 2014, 29(2): 21-29. [14] Bertsimas D, Sim M.The price of robustness[J]. Operations Research, 2004, 52(1): 35-53. [15] 刘一欣, 郭力, 王成山. 微电网两阶段鲁棒优化经济调度方法[J]. 中国电机工程学报, 2018, 38(14): 4013-4022. Liu Yixin, Guo Li, Wang Chengshan.Economic dispatch of microgrid based on two stage robust optimization[J]. Proceedings of CSEE, 2018, 38(14): 4013-4022. [16] Wang Chengshan, Jiao Bingqi, Guo Li, et al.Robust scheduling of building energy system under uncertainty[J]. Applied Energy, 2016, 167: 366-376. [17] 吴巍, 汪可友, 李国杰, 等. 提升风电消纳区间的鲁棒机组组合[J]. 电工技术学报, 2018, 33(3): 523-532. Wu Wei, Wang Keyou, Li Guojie, et al.Robust unit commitment to improve the admissible region of wind power[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 523-532. [18] 陈来军, 梅生伟, 王俊杰, 等. 面向智能电网的大规模压缩空气储能技术[J]. 电工电能新技术, 2014, 33(6): 1-6. Chen Laijun, Mei Shengwei, Wang Junjie, et al.Smart grid oriented large-scale compressed air energy storage technology[J]. Advanced Technology of Electrical Engineering and Energy, 2014, 33(6): 1-6. [19] Beaudin M, Zareipour H, Schellenberglabe A, et al.Energy storage for mitigating the variability of renewable electricity sources: an updated review[J]. Energy for Sustainable Development, 2010, 14(4): 302-314. [20] Li Yaowang, Miao Shihong, Luo Xing, et al.Optimization model for the power system scheduling with wind generation and compressed air energy storage combination[C]//International Conference on Automation and Computing, IEEE, Colchester, UK, 2016: 300-305. [21] 谢俊, 蔡美红, Simon N G, 等. 一种新颖的可控负荷优化调度策略[J]. 南京邮电大学学报: 自然科学版, 2014, 34(5): 99-104. Xie Jun, Cai Meihong, Simon N G, et al.Novel optimal dispatch strategy for controllable loads[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science Edition, 2014, 34(5): 99-104. [22] 彭春华, 谢鹏, 陈臣. 大规模光伏电站接入电网可调节鲁棒优化调度[J]. 中国电机工程学报, 2014, 34(25): 4324-4332. Peng Chunhua, Xie Peng, Chen Chen.Adjustable robust optimal dispatch of power system with large-scale photovoltaic power stations[J]. Proceedings of CSEE, 2014, 34(25): 4324-4332. [23] Robbins H.A remark on stirling's formula[J]. American Mathematical Monthly, 1955, 62(1): 26-29. |
|
|
|