|
|
Opening Damper Condition Evaluation Based on Vibration Time-Frequency Images for High-Voltage Circuit Breakers |
Yang Qiuyu1, Ruan Jiangjun1, Huang Daochun1, Zhuang Zhijian2 |
1. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 2. Power Product Medium Voltage Technology Center ABB (China) Co. Ltd Xiamen 361006 China |
|
|
Abstract The working performance of opening damper directly affects the opening mechanical characteristics and components life of high-voltage circuit breakers (HVCBs). The method of time-frequency analysis can reveal exactly the frequency components and time-varying characteristics of vibration signals of HVCB. Time-frequency image which constructed by using the time-frequency analysis method contains rich feature information of HVCB’s working condition. In this paper, a novel condition evaluation method for the opening damper of HVCB based on vibration time-frequency image and support vector machine (SVM) is proposed and analyzed. Firstly, the vibration signal is converted into time-frequency image by using wavelet transform (WT). Then, texture features and shape features of the time-frequency image are extracted as eigenvectors. Finally, SVM is used to classify the working status of the opening damper. The experimental results show that the method can effectively evaluate the condition of the opening damper. The method presented in this paper is almost newly for fault diagnosis of HVCB, especially for monitoring and diagnosis of HVCB’s opening damper.
|
Received: 14 June 2018
Published: 12 October 2019
|
|
|
|
|
[1] 程学珍, 朱晓林, 杜彦镔, 等. 基于神经模糊Petri网的高压断路器故障诊断研究[J]. 电工技术学报, 2018, 32(11): 2535-2544. Cheng Xuezhen, Zhu Xiaolin, Du Yanbin, et al.High voltage circuit breaker fault diagnosis based on neural fuzzy Petri nets[J]. Transactions of China Electrotechnical Society, 2018, 32(11): 2535-2544. [2] 赵书涛, 吴成坚, 李明, 等. 基于NCC-P-S优化算法的断路器机械特性测试方法研究[J]. 中国电机工程学报, 2017, 37(14): 4265-4271. Zhao Shutao, Wu Chengjian, Li Ming, et al.Research of circuit breaker mechanical characteristic test method based on normalized cross correlation-pyramid-sector optimization algorithm[J]. Proceedings of the CSEE, 2017, 37(14): 4265-4271. [3] 程序, 关永刚, 张文鹏, 等. 基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J]. 电工技术学报, 2014, 29(7): 209-215. Cheng Xu, Guan Yonggang, Zhang Wenpeng, et al.Diagnosis method on the mechanical failure of high voltage circuit breakers based on factor analysis and SVM[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 209-215. [4] 孙一航, 武建文, 廉世军, 等. 结合经验模态分解能量总量法的断路器振动信号特征向量提取[J]. 电工技术学报, 2014, 29(3): 228-236. Sun Yihang, Wu Jianwen, Lian Shijun, et al.Extraction of vibration signal feature vector of circuit breaker based on empirical mode decomposition amount of energy[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 228-236. [5] 杨秋玉, 阮江军, 黄道春, 等. 基于振动信号的高压断路器触头超程状态识别[J]. 电机与控制学报, 2019, 23(6): 27-34. Yang Qiuyu, Ruan Jiangjun, Huang Daochun, et al.Over-travel state identification for electrical contact of high-voltage circuit breaker using vibration signature[J]. Electric Machines and Control, 2019, 23(6): 27-34. [6] 沈虹, 曾锐利, 杨万成, 等. 基于时频图像极坐标增强的柴油机故障诊断[J]. 振动、测试与诊断, 2018, 38(1): 27-33. Shen Hong, Zeng Ruili, Yang Wancheng, et al.Diesel engine fault diagnosis based on polar coordinate enhancement of time-frequency diagram[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(1): 27-33. [7] 韩琳楚, 张景旭, 杨飞. 基于Gabor变换的大型望远镜跟踪镜的轴承抖动分析[J]. 振动与冲击, 2017, 36(23): 263-267. Han Linchu, Zhang Jingxu, Yang Fei.Bearing jitter analysis based on Gabor transformation for trackingmirror of a large telescope[J]. Journal of Vibration and Shock, 2017, 36(23): 263-267. [8] 乌建中, 陶益. 基于短时傅里叶变换的风机叶片裂纹损伤检测[J]. 中国工程机械学报, 2014, 12(2): 180-183. Wu Jianzhong, Tao Yi.STFT-based crack detection on wind turbine blades[J]. Chinese Journal of Construction Machinery, 2014, 12(2): 180-183. [9] 牛德智, 陈长兴, 陈婷, 等. 基于短时傅里叶变换的Duffing振子微弱信号检测[J]. 航空学报, 2015, 36(10): 3418-3429. Niu Dezhi, Chen Changxing, Chen Ting, et al.Weak signal detection with oscillator based on short time Fourier transform[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3418-3429. [10] 闫维明, 马裕超, 何浩祥, 等. 双线性时频分布交叉项提取及损伤识别应用[J]. 振动、测试与诊断, 2014, 34(6): 1014-1021. Yan Weiming, Ma Yuchao, He Haoxiang, et al.Cross-term extraction from bilinear time-frequency distributions and application in structural damage detection[J]. Journal of Vibration, Measurement & Diagnosis, 2014, 34(6): 1014-1021. [11] 吴广宁, 夏国强, 宋臻杰. 基于小波分析和时域介电谱的变压器油纸绝缘老化状态评估[J]. 高电压技术, 2018, 44(1): 226-233. Wu Guangning, Xia Guoqiang, Song Zhenjie, et al.Status assessment of aging condition of transformer oil-paper insulation based on time domain dielectric spectroscopy and wavelet analysis[J]. High Voltage Engineering, 2018, 44(1): 226-233. [12] 鲁军, 李侠, 王重马. 基于小波分析的MSMA振动传感器信号处理与故障检测[J]. 电工技术学报, 2015, 30(10): 354-360. Lu Jun, Li Xia, Wang Chongma.Signal process and fault detection of MSMA vibration sensor based on wavelet analysis[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 354-360. [13] Parvathi S, Sathish H.Dyadic wavelet transform-based acoustic signal analysis for torque prediction of a three-phase induction motor[J]. IET Signal Processing, 2017, 11(5): 604-612. [14] 程军圣, 杨怡, 杨宇. 局部特征尺度分解方法及其在齿轮故障诊断中的应用[J]. 机械工程学报, 2012, 48(9): 64-71. Cheng Junsheng, Yang Yi, Yang Yu.Local characteristic-scale decomposition method and its application to gear fault diagnosis[J]. Journal of Mechanical Engineering, 2012, 48(9): 64-71. [15] 郭剑峰, 刘金朝, 王卫东. 基于变参数域和短时高斯线性调频基的自适应信号分解算法[J]. 振动与冲击, 2015, 34(12): 133-139. Guo Jianfeng, Liu Jinzhao, Wang Weidong.Variable parameters domain and short time adaptive gaussian chirplet signal decomposition algorithm[J]. Journal of Vibration and Shock, 2015, 34(12): 133-139. [16] 李建鹏, 赵书涛, 夏燕青. 基于双谱和希尔伯特-黄变换的断路器故障诊断方法[J]. 电力自动化设备, 2013, 33(2): 115-125. Li Jianpeng, Zhao Shutao, Xia Yanqing.Fault diagnosis based on bispectrum and Hilbert-Huang transform for circuit breaker[J]. Electric Power Automation Equipment, 2013, 33(2): 115-125. [17] Wang Xiaodong, Li Baoqing, Liu Zhiwei, et al.Analysis of partial discharge signal using the Hilbert-Huang transform[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1063-1067. [18] Gu Feng-Chang, Chang Hong-Chan, Kuo Cheng-Chien.Gas-insulated switchgear PD signal analysis based on Hilbert-Huang transform with fractal parameters enhancement[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1049-1055. [19] 贾亚飞, 朱永利, 王刘旺. 基于VMD和Wigner-Ville分布的局放信号时频分析[J]. 系统仿真学报, 2018, 30(2): 569-578. Jia Yafei, Zhu Yongli, Wang Liuwang.Time-frequency analysis of partial discharge signal based on VMD and Wigner-Ville distribution[J]. Journal of System Simulation, 2018, 30(2): 569-578. [20] 刘洋, 曹云东, 侯春光. 基于经验模态分解及维格纳威尔分布的电缆双端故障定位算法[J]. 中国电机工程学报, 2015, 35(16): 4086-4093. Liu Yang, Cao Yundong, Hou Chunguang.The cable two-terminal fault location algorithm based on EMD and WVD[J]. Proceedings of the CSEE, 2015, 35(16): 4086-4093. [21] 郑红, 李钊, 李俊. 灰度共生矩阵的快速实现和优化方法研究[J]. 仪器仪表学报, 2012, 33(11): 2509-2515. Zheng Hong, Li Zhao, Li Jun.Study on fast implementation and optimal method of gray level co-occurrence matrix[J]. Chinese Journal of Scientific Instrument, 2012, 33(11): 2509-2515. [22] Hu Ming-Kuei.Visual pattern recognition by moment invariant[J]. IEEE Transactions on Information Theroy, 1962, 8(2): 179-187. |
|
|
|