|
|
Time-Domain Fractional Circuit Model for Constant Current Charging of Supercapacitor |
Yu Bo1, Liang Rui1, Pu Yifei2, Yang Guoren1, Hu Yu1 |
1. School of Physics and Engineering Chengdu Normal University Chengdu 611130 China; 2. School of Computer Science Sichuan University Chengdu 610065 China |
|
|
Abstract With the extensive application of supercapacitor as a new energy storage device, it is of great significance to establish accurately equivalent model for the supercapacitor. According to the definition of fractional calculus and based on the combination of the constant current charging curve of the fractor as well as the actual physical structure of the supercapacitor, a fractional RF series circuit model and a fractional RFR hybrid circuit model for constant current charging of supercapacitor were directly established in the time domain. In addition, the model parameter identification and the fitting error analysis method were also provided in the current work. In the process of the parameter identification and the error analysis of both the fractional RF series circuit model and the fractional RFR hybrid circuit model combined with the constant current charging data of the supercapacitor, the fitting precision of both the fractional RF series circuit model and the fractional RFR hybrid circuit model are proved to be much advanced than the first-order RC circuit model and the classical equivalent circuit model, having quite similar accuracy. Through analyzing the parameter sensitivity of the more succinct fractional RF series circuit model, the influence rules of the operation order, the eigenvalue and the resistance value of the resistor element on the constant current charging of the supercapacitor can be obtained. In the meanwhile, the proposed study also demonstrates that the classical equivalent circuit model belongs to a special case of the fractional RFR hybrid circuit model, the first-order RC circuit model is a special case of the fractional RF series circuit model, and the fractional RF series circuit model refers to a special case of the fractional RFR hybrid circuit.
|
Received: 13 June 2018
Published: 20 September 2019
|
|
|
|
|
[1] Miller J M.超级电容器的应用[M]. 韩晓娟, 李建林, 田春光, 译. 北京: 机械工业出版社, 2014. [2] 赵洋, 梁海泉, 张逸成. 电化学超级电容器建模研究现状与展望[J]. 电工技术学报, 2012, 27(3): 188-195. Zhao Yang, Liang Haiquan, Zhang Yicheng.Review and expectation of modeling research[J]. Transactions of China Electrotechnical Society, 2012, 27(3): 188-195. [3] 单金生, 吴立锋, 关永, 等. 超级电容建模现状及展望[J]. 电子元件与材料, 2013, 32(8): 9-14. Shan Jinsheng, Wu Lifeng, Guan Yong, et al.Review and expectation of modeling research on supercapacitor[J]. Electronic Components and Materials, 2013, 32(8): 9-14. [4] 马茜, 郭昕, 罗培, 等. 一种基于超级电容储能系统的新型铁路功率调节器[J]. 电工技术学报, 2018, 33(6): 1208-1218. Ma Qian, Guo Xin, Luo Pei, et al.A novel railway power conditioner based on super capacitor energy storage system[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1208-1218. [5] 疏许健, 张波. 降低整数阶无线电能传输谐振频率的分数阶方法[J]. 电工技术学报, 2017, 32(18): 83-89. Shu Xujian, Zhang Bo.A fractional-order method to reduce the resonant frequency of integer-order wireless power transmission system[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 83-89. [6] 袁晓. 分抗逼近电路之数学原理[M]. 北京: 科学出版社, 2015. [7] 陈文, 孙洪广. 反常扩散的分数阶微分方程和统计模型[M]. 北京: 科学出版社, 2017. [8] 薛定宇. 分数阶微积分学与分数阶控制[M]. 北京:科学出版社, 2018. [9] 闫丽梅, 祝玉松, 徐建军, 等. 基于分数阶微积分理论的线路模型建模方法[J]. 电工技术学报, 2014, 29(9): 260-268. Yan Limei, Zhu Yusong, Xu Jianjun, et al.Transmission lines modeling method based on fractional order calculus theory[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 260-268. [10] 刘树林, 崔纳新, 李岩, 等. 基于分数阶理论的车用锂离子电池建模及荷电状态估计[J]. 电工技术学报, 2017, 32(4): 189-195. Liu Shulin, Cui Naxin, Li Yan, et al.Modeling and state of charge estimation of lithium-ion battery based on theory of fractional order for electric vehicle[J]. Transactions of China Electrotechnical Society, 2017, 32(4): 189-195. [11] Freeborn T J, Maundy B, Elwakil A.Accurate time domain extraction of supercapacitor fractional-order model parameters[C]//IEEE International Symposium on Circuits and Systems, Beijing, 2013: 2259-2262. [12] 王炎, 崔建涛, 刘忠. 基于分数阶巴特沃斯滤波器的新型超级电容器[J]. 电子元件与材料, 2017, 36(5): 30-36. Wang Yan, Cui Jiantao, Liu Zhong.New supercapacitor model of fractional order Butterworth filter[J]. Electronic Components and Materials, 2017, 36(5): 30-36. [13] Pu Yifei, Zhang Yi, Zhou Jiliu.Fractional hopfield neural networks: fractional dynamic associative recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2319-2333. [14] Pu Yifei.Measurement units and physical dimensions of fractance-part I: position of purely ideal fractor in chua’s axiomatic circuit element system and fractional-order reactance of fractor in its natural implementation[J]. IEEE Access, 2016, 4: 3379-3397. [15] Han Qiang, Liu Chongxin, Sun Lei, et al.A fractional order hyperchaotic system derived from a Liu system and its circuit realization[J]. Chinese Physics B, 2013, 22(2): 133-138. [16] Pu Yifei, Yuan Xiao, Yu Bo.Analog circuit implementation of fractional-order memristor: arbitrary-order lattice scaling fracmemristor[J]. IEEE Transactions on Circuits and Systems I-Regular Papers, 2018, 65(9): 2903-2916. [17] Pu Yifei, Zhang Yi, Zhou Jiliu.Fractional hopfield neural networks: fractional dynamic associative recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(10): 2319-2333. [18] Saidi B, Amairi M, Najar S, et al.Bode shaping-based design methods of a fractional order PID controller for uncertain systems[J]. Nonlinear Dynamics, 2015, 80(4): 1817-1838. [19] Wang Faqiang, Ma Xikui.Transfer function modeling and analysis of the open-loop Buck converter using the fractional calculus[J]. Chinese Physics B, 2013, 22(3): 030506. [20] 余波, 何秋燕, 袁晓. 任意阶标度分形格分抗与非正则格型标度方程[J]. 物理学报, 2018, 67(7): 070202. Yu Bo, He Qiuyan, Yuan Xiao.Scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equation[J]. Acta Physica Sinica, 2018, 67(7): 070202. [21] He Qiuyan, Yu Bo, Yuan Xiao.Carlson iterating rational approximation and performance analysis of fractional operator with arbitrary order[J]. Chinese Physics B, 2017, 26(4): 040202. [22] 袁子, 袁晓. 规则RC分形分抗逼近电路的零极点分布[J]. 电子学报, 2017, 45(10): 2511-2520. Yuan Zi, Yuan Xiao.On zero-pole distribution of regular RC fractal fractance approximation circuits[J]. Acta Electronica Sinica, 2017, 45(10): 2511-2520. [23] 周宏伟, 王春萍, 段志强, 等. 基于分数阶导数的盐岩流变本构模型[J]. 中国科学:物理学力学天文学, 2012, 42(3): 310-318. Zhou Hongwei, Wang Chunping, Duan Zhiqiang, et al.Time-based fractional derivative approach to creep constitutive model of salt rock[J]. Scientia Sinica Physica Mechanica and Astronomica, 2012, 42(3): 310-318. [24] 丁靖洋, 周宏伟, 刘迪, 等. 盐岩分数阶三元件本构模型研究[J]. 岩石力学与工程学报, 2014, 33(4): 672-678. Ding Jingyang, Zhou Hongwei, Liu Di, et al.Research on fractional derivative three elements model of salt rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4): 672-678. [25] 吴斐, 刘建锋, 边宇, 等. 盐岩的分数阶导数蠕变模型[J]. 四川大学学报: 工程科学版, 2014, 46(5): 22-27. Wu Fei, Liu Jianfeng, Bian Yu, et al.Fractional derivative creep model of salt rock[J]. Journal of Sichuan University: Engineering Science Edition, 2014, 46(5): 22-27. [26] 吴斐, 谢和平, 刘建锋, 等. 分数阶黏弹塑性蠕变模型试验研究[J]. 岩石力学与工程学报, 2014, 33(5): 964-970. Wu Fei, Xie Heping, Liu Jianfeng, et al.Experimental study of fractional viscoelastic-plastic creep model[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(5): 964-970. |
|
|
|