|
|
Multi-Constrained Flexible Virtual Inertial Control Method for Photovoltaic Energy Storage System |
Meng Jianhui, Peng Jialin, Wang Yi, Song Meiqi, Guo Yu |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power University Baoding 071003 China |
|
|
Abstract Rotational inertia of power system is reduced because of the large number of integrated distributed generators. As an effective way to solve this problem, virtual synchronous generator (VSG) technology has significant advantages in flexible adjustment of virtual inertia. However, the flexibility of the adjustment must meet various constraints. In this paper, a multi-constrained flexible virtual inertia (M-FVI) control method is proposed in combination with the actual working conditions. This method considers the limit working state of the energy storage unit, the system frequency change rate, the inverter capacity and the power adjustable amount of the system in unit time. The four-terminal system model with photovoltaic energy storage VSG unit is built, and the small-signal model of the system is established. The influence of key parameters on the system stability is analyzed by root locus method. The method and principle need to be followed for the design of control parameters are given. Finally, the effectiveness and practicability of the multi-constrained virtual inertial control strategy are verified by the hardware-in-the-loop experimental platform.
|
Received: 08 January 2019
Published: 29 July 2019
|
|
|
|
|
[1] Zeng Zheng, Yang Huan, Zhao Rongxiang, et al.Topologies and control strategies of multi-functional grid-connected inverters for power quality enhancement: a comprehensive review[J]. Renewable and Sustain- able Energy Reviews, 2013, 24: 223-270. [2] 郑天文, 陈来军, 陈天一, 等. 虚拟同步发电机技术及展望[J]. 电力系统自动化, 2015, 39(21): 165-175. Zheng Tianwen, Chen Laijun, Chen Tianyi, et al.Review and prospect of virtual synchronous generator technologies[J]. Automation of Electric Power Systems, 2015, 39(21): 165-175. [3] Rocabert J, Luna A, Blaabjerg F, et al.Control of power converters in AC microgrids[J]. IEEE Transa- ctions on Power Electronics, 2012, 27(11): 4734-4749. [4] 王成山, 高菲, 李鹏, 等. 低压微网控制策略研究[J]. 中国电机工程学报, 2012, 32(25): 2-8. Wang Chengshan, Gao Fei, Li Peng, et al.Control strategy research on low voltage microgrid[J]. Proceedings of the CSEE, 2012, 32(25): 2-8. [5] Beck H P, Hesse R.Virtual synchronous machine[C]// IEEE 9th International Conference on Electrical Power Quality and Utilisation, Barcelona, Spain, 2007: 1-6. [6] 吕志鹏, 罗安, 蒋雯倩, 等. 多逆变器环境微网环流控制新方法[J]. 电工技术学报, 2012, 27(1): 40-47. Lü Zhipeng, Luo An, Jiang Wenqian, et al.New circulation control method for micro-grid with multi- inverter micro-sources[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 40-47. [7] 石荣亮, 张兴, 刘芳, 等. 虚拟同步发电机及其在多能互补微电网中的运行控制策略[J]. 电工技术学报, 2016, 31(20): 170-180. Shi Rongliang, Zhang Xing, Liu Fang, et al.Control technologies of multi-energy complementary micro- grid operation based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 170-180. [8] Torres L M A, Lopes L A C, Moran T L A, et al. Self-tuning virtual synchronous machine: a control strategy for energy storage systems to support dynamic frequency control[J]. IEEE Transactions on Energy Conversion, 2014, 29(4): 833-840. [9] Alipoor J, Miura Y, Ise T.Power system stabilization using virtual synchronous generator with alternating moment of inertia[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(2): 451-458. [10] 孟建辉, 王毅, 石新春, 等. 基于虚拟同步发电机的分布式逆变电源控制策略及参数分析[J]. 电工技术学报, 2014, 29(12): 1-10. Meng Jianhui, Wang Yi, Shi Xinchun, et al.Control strategy and parameter analysis of distributed inverters based on VSG[J]. Transactions of China Electrotechnical Society, 2014, 29(12): 1-10. [11] 邹培根, 孟建辉, 王毅, 等. 灵活虚拟同步机主要控制参数对系统频率稳定性的影响分析[J]. 高电压技术, 2018, 44(4): 1335-1342. Zou Peigen, Meng Jianhui, Wang Yi, et al.Influence analysis of the main control parameters in FVSG on the frequency stability of the system[J]. High Voltage Engineering, 2018, 44(4): 1335-1342. [12] Liu Jia, Miura Y, Ise T.Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators[J]. IEEE Transactions on Power Elec- tronics, 2016, 31(5): 3600-3611. [13] Wu Heng, Ruan Xinbo, Yang Dongsheng, et al.Small-signal modeling and parameters design for virtual synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4292-4303. [14] 涂春鸣, 杨义, 兰征, 等. 含多虚拟同步发电机的微电网二次调频策略[J]. 电工技术学报, 2018, 33(10): 2186-2195. Tu Chunming, Yang Yi, Lan Zheng, et al.Secondary frequency regulation strategy in microgrid based on VSG[J]. Transactions of China Electrotechnical Society, 2018, 33(10): 2186-2195. [15] Li Dongdong, Zhu Qianwei, Lin Shunfu, et al.A self-adaptive inertia and damping combination control of VSG to support frequency stability[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 397-398. [16] Wang Fei, Zhang Lijun, Feng Xiayun, et al.An adaptive control strategy for virtual synchronous generator[J]. IEEE Transactions on Industry Appli- cations, 2018, 54(5): 5124-5133. [17] 张波, 颜湘武, 黄毅斌, 等. 虚拟同步机多机并联稳定控制及其惯量匹配方法[J]. 电工技术学报, 2017, 32(10): 42-52. Zhang Bo, Yan Xiangwu, Huang Yibin, et al.Stability control and inertia matching method of multi-parallel virtual gynchronous generators[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 42-52. [18] 陈萌, 肖湘宁, 罗超. 基于虚拟同步发电机的微电网延时补偿二次频率控制[J]. 电工技术学报, 2018, 33(16): 3845-3854. Chen Meng, Xiao Xiangning, Luo Chao.Secondary frequency control including delay compensation in microgrids based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2018, 33(16): 3845-3854. [19] 石荣亮, 张兴, 徐海珍, 等. 光储柴独立微电网中的虚拟同步发电机控制策略[J]. 电工技术学报, 2017, 32(23): 127-139. Shi Rongliang, Zhang Xing, Xu Haizhen, et al.A control strategy for islanded photovoltaic-battery- diesel microgrid based on virtual synchronous generator[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 127-139. [20] Poolla B K, Bolognani S, Dörfler F.Optimal placement of virtual inertia in power grids[J]. IEEE Transactions on Automatic Control, 2017, 62(12): 6209-6220. [21] Fathi A, Shafiee Q, Bevrani H.Robust frequency control of microgrids using an extended virtual synchronous generator[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6289-6297. [22] 孟建辉, 石新春, 王毅, 等. 改善微电网频率稳定性的分布式逆变电源控制策略[J]. 电工技术学报, 2015, 30(4): 70-79. Meng Jianhui, Shi Xinchun, Wang Yi, et al.Control strategy of DER inverter for improving frequency stability of microgrid[J]. Transactions of China Electrotechnical Society, 2015, 30(4): 70-79. [23] Torres M, Lopes L A C. Virtual synchronous generator control in autonomous wind-diesel power systems[C]//2009 IEEE Electrical Power & Energy Conference (EPEC), Montreal, 2009: 1-6. |
|
|
|