|
|
Cross-Regulation Characteristic of Continuous Conduction Mode Single-Inductor Dual-Output Boost Converter with Common-Mode Voltage and Differential-Mode Voltage Control |
Ran Xiang, Zhou Guohua, Zhou Shuhan |
Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle Ministry of Education School of Electrical Engineering Southwest Jiaotong University Chengdu 611756 China |
|
|
Abstract Taking single-inductor dual-output (SIDO) Boost converter in continuous conduction mode (CCM) as the research object, the working principle of CCM SIDO Boost converter controlled by common-mode voltage and differential-mode voltage (CMV-DMV) is analyzed in detail. The time-average equivalent circuit modeling approach is used to derive the transfer functions, such as control to output, output impedance and cross-regulation impedance, and so on. By establishing the closed-loop small signal model of CMV-DMV controlled CCM SIDO Boost converter, the cross-regulation characteristics in different output voltage levels are discussed by bode diagram in frequency-domain. The results show that, for CMV-DMV controlled CCM SIDO Boost converter, the cross-regulation of high-voltage output to low-voltage output is smaller than that of low-voltage output to high-voltage output when the two output voltages are not equal, while the cross-regulation of the first turn-on output branch to the second one is bigger than that of the second output branch to the first one when the two output voltages are equal. Finally, the correctness of the theoretical analysis is verified by the experimental results.
|
Received: 08 April 2018
Published: 28 June 2019
|
|
|
|
|
[1] Xu Weiwei, Zhu Xiaoting, Hong Zhiliang, et al.Design of single-inductor dual-output switching converters with average current mode control[C]// IEEE Asia Pacific Conference on Circuits and Systems, Macao, China, 2008: 902-905. [2] Moreno F V, El A A, Calvente J, et al.Dynamics and stability issues of a single-inductor dual-switching DC-DC converter[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(2): 415-426. [3] 周述晗, 周国华, 毛桂华, 等. 电流型控制单电感双输出开关变换器稳定性与瞬态特性分析[J]. 电工技术学报, 2018, 33(6): 1374-1381. Zhou Shuhan, Zhou Guohua, Mao Guihua, et al.Stability and transient response analysis of current- mode controlled single-inductor dual-output converter[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1374-1381. [4] 曾君, 孙伟华, 刘俊峰. 基于可控开关电容充放电平衡的多路LED驱动器[J]. 电工技术学报, 2017, 32(18): 267-275. Zeng Jun, Sun Weihua, Liu Junfeng.Multi-channel LED driver based on charging and discharging balance of switch-controlled capacitor[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(18): 267-275. [5] Hwu K I, Yau Y T.Applying one-comparator counter-based sampling to current sharing control of multichannel LED strings[J]. IEEE Transactions on Industry Applications, 2011, 47(6): 2413-2421. [6] Barrado A, Olias E, Lazaro A, et al.PWM-PD multiple output DC/DC converters: operation and control-loop modeling[J]. IEEE Transactions on Power Electronics, 2004, 19(1): 140-149. [7] 周述晗, 周国华, 陈兴. 升压型单电感双输出变换器输出低电压的理论分析与实验验证[J]. 电工技术学报, 2014, 19(增刊1): 218-225. Zhou Shuhan, Zhou Guohua, Chen Xing.Theoretical analysis and experimental verification of single- inductor dual-output boost converter with low voltage output[J]. Transactions of China Electrotechnical Society, 2014, 19(S1): 218-225. [8] Dongwon K, Rincon M, Gabriel A.Single inductor multiple output switching DC-DC converters[J]. IEEE Transactions on Circuits and Systems Ⅱ: Express Briefs, 2009, 56(8): 614-618. [9] 刘雪山, 许建平, 王楠, 等. 断续模式单电感双输出Buck功率因数校正变换器[J]. 电工技术学报, 2015, 30(22): 62-70. Liu Xushan, Xu Jianping, Wang Nan, et al.Single- inductor dual output Buck power factor correction converter operating in discontinuous conduction mode[J]. Transactions of China Electrotechnical Society, 2015, 30(22): 62-70. [10] 王瑶, 许建平, 周国华. 电压型控制SIDO CCM Buck变换器的统一离散迭代映射模型及稳定性研究[J]. 中国电机工程学报, 2018, 38(9): 2717-2727. Wang Yao, Xu Jianping, Zhou Guohua.Unified discrete iterative map model and stability research of voltage-mode controlled single-inductor dual-output CCM buck converter[J]. Proceeding of the CSEE, 2018, 38(9): 2717-2727. [11] 王瑶. 单电感双输出CCM Buck变换器输出支路交叉影响研究[D]. 成都: 西南交通大学, 2014. [12] Yang Yang, Sun Liang, Wu Xiaobo.A single- inductor dualoutput buck converter with self- adapted PCCM method[C]//IEEE International Conference of Electron Devices and Solid-State Circuits, Xi’an, China, 2009: 87-90. [13] Ma Dongsheng, Ki W H, Tsui C Y.A pseudo- CCM/DCM SIMO switching converter with freewheel switching[J]. IEEE Journal of Solid-State Circuits, 2002, 38(6): 1007-1014. [14] Lee Y H, Huang T C, Yang Y Y.Minimized transient and steady-state cross regulation in 55-nm CMOS single-inductor dual-output (SIDO) step-down DC- DC converter[J]. IEEE Journal of Solid-State Circuits, 2011, 46(11): 2488-2499. [15] Lin K Y, Huang C S, Chen D, et al.Modeling and design of feedback loops for a voltage-mode single- inductor dual-output Buck converter[C]//IEEE Power Electronics Specialists Conference, Rhodes, Sydney, 2008: 3389-3395. [16] 王瑶, 许建平, 钟曙, 等. 单电感双输出CCM Buck变换器输出交叉影响分析[J]. 中国电机工程学报, 2014, 34(15): 2371-2378. Wang Yao, Xu Jianping, Zhong Shu, et al.The cross regulation analysis of single-inductor dual-output buck converter[J]. Proceedings of the CSEE, 2014, 34(15): 2371-2378. [17] Pradipta P, Jyotirmoy G, Amit P.Control scheme for reduced cross-regulation in single-inductor multiple- output DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11): 5095-5104. [18] Trevisan D, Mattavelli P, Tenti P.Digital control of single-inductor multiple-output step-down DC-DC converters in CCM[J]. IEEE Transactions on Industrial Electronics, 2008, 55(9): 3476-3483. [19] Xu Jianping.Modeling of switching DC-DC converters by time-averaging equivalent circuit approach[J]. International Journal of Electronics, 1993, 74(3): 465-475. [20] 林天仁, 李勇, 麦瑞坤. 基于LCL-S拓扑的感应电能传输系统的建模与控制方法[J]. 电工技术学报, 2018, 33(1): 104-111. Lin Tianren, Li Yong, Mai Ruikun.Modeling and control method of inductive power transfer system based on LCL-S topology[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 104-111. |
|
|
|