[1] 陈礼频, 杜新伟, 汪伟, 等. 考虑故障电阻随机不确定性的电压暂降监测点优化配置[J]. 电工技术学报, 2016, 31(23): 93-99. Chen Linpin, Du Xinwei, Wang Wei, et al.Optimal voltage sag monitors placement considering randomness of fault resistance[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 93-99. [2] 程志友, 王雪菲, 徐佳. 一种基于复阻抗的电压暂降定位方法[J]. 电力系统保护与控制, 2016, 44(4): 149-154. Cheng Zhiyou, Wang Xuefei, Xu Jia.A voltage sag detection method based on complex impedance[J]. Power System Protection and Control, 2016, 44(4): 149-154. [3] 黄飞腾, 南余蓉, 翁国庆, 等. DG并网对暂态电压扰动方向判定的影响极其校正算法[J]. 电工技术学报, 2017, 32(23): 176-184. Huang Feiteng, Nan Yurong, Weng Guoqing, et al.Correction algorithm of direction finding for transient voltage disturbance considering distributed generators[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 176-184. [4] 刘颖英, 王同勋, 冯丹丹, 等. 基于多重判据的电压暂降故障源定位方法[J]. 中国电机工程学报, 2015, 35(1): 103-111. Liu Yingying, Wang Tongxun, Feng Dandan, et al.Multiple criterions based voltage sag location method[J]. Proceeding of the CSEE, 2015, 35(1): 103-111. [5] Olguin G, Vuinovich F, Bollen M H J. An optimal monitoring program for obtaining Voltage sag system indexes[J]. IEEE Transactions on Power Systems, 2006, 21(1): 378-384. [6] Espinosa-Juarez E, Hernandez A, Olguin G.An approach based on analytical expressions for optimal location of voltage sags monitors[J]. IEEE Transactions on Power Delivery, 2009, 24(4): 2034-2042. [7] 郎福龙, 田立军, 王滕藤. 基于电压暂降监测点优化配置的同心松弛凹陷域分析[J]. 电力系统保护与控制, 2017, 45(18): 96-101. Lang Fulong, Tian Lijun, Wang Tengteng.An analysis to the concentric relaxation vulnerability area of voltage sag based on optimal allocation of voltage sag monitors[J]. Power System Protection and Control, 2017, 45(18): 96-101. [8] 周超, 田立军. 基于粒子群优化算法的电压暂降监测点优化配置[J]. 电工技术学报, 2014, 29(4): 181-187. Zhou Chao, Tian Lijun.An optimum allocation method of voltage sag monitoring nodes based on particle swarm optimization algorithm[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 181-187. [9] 邱玉涛, 肖先勇, 熊茜, 等. 基于临界阻抗和广度优先-条件搜索的暂降监测装置优化配置[J]. 电力自动化设备, 2014, 34(10): 138-143. Qiu Yutao, Xiao Xianyong, Xiong Qian, et al.Optimal sag monitor placement based on critical impedance and breadth first-condition search[J]. Electric Power Automation Equipment, 2014, 34(10): 138-143. [10] 王东旭, 乐健, 刘开培, 等. 基于线路分段法的电压跌落监测网络优化布点策略[J]. 电工技术学报, 2011, 26(10): 31-38. Wang Dongxu, Le Jian, Liu Kaipei, et al.Optimal location strategy of voltage dip monitoring network based on line sectionalizing method[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 31-38. [11] 唐琳, 肖先勇, 张逸, 等. 电压暂降状态和水平评估模式匹配法与监测装置多目标优化配置[J]. 中国电机工程学报, 2015, 35(13): 3264-3271. Tang Lin, Xiao Xianyong, Zhang Yi, et al.Voltage sag state and level assessment based on pattern matching method and multi-objective optimal monitors allocation[J]. Proceedings of the CSEE, 2015, 35(13): 3264-3271. [12] 周超, 田立军, 侯燕文, 等. 基于监测点优化配置的电压暂降故障点定位估计[J]. 电力系统自动化, 2012, 36(16): 102-107. Zhou Chao, Tian Lijun, Hou Yanwen, et al.Fault location estimation based on optimal voltage sag monitoring program[J]. Automation of Electric Power Systems, 2012, 36(16): 102-107. [13] 邱玉涛, 肖先勇, 赵恒, 等. 满足电压暂降与故障位置均可观的监测装置二阶段配置[J]. 电网技术, 2014, 38(11): 3171-3177. Qiu Yutao, Xiao Xianyong, Zhao Heng, et al.A placement approach of two-stage monitors making both voltage sag and fault position observable[J]. Power System Technology, 2014, 38(11): 3171-3177. [14] 陈礼频, 肖先勇, 张文海. 考虑扰动源定位的电压暂降监测点最优配置[J]. 电力自动化设备, 2014, 34(2): 79-84, 90. Chen Lipin, Xiao Xianyong, Zhang Wenhai.Optimal allocation of voltage-sag monitors considering disturbance-source locating[J]. Electric Power Automation Equipment, 2014, 34(2): 79-84, 90. [15] Liao Yuan.Fault location observability analysis and optimal meter placement based on voltage measurements[J]. Electric Power Systems Research, 2009, 79(7): 1062-1068. [16] 谭丹, 杨洪耕. 基于故障识别法的电压暂降监测点的优化配置[J]. 电力系统保护与控制, 2013, 41(20): 7-12. Tan Dan, Yang Honggeng.An optimum allocation of voltage sag monitor based on fault recognition method[J]. Power System Protection and Control, 2013, 41(20): 7-12. [17] Avendano-Mora M, Milanovic J V.Monitor placement for reliable estimation of voltage sags in power networks[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 936-944. [18] 张利彪, 周春光, 马铭, 等. 基于粒子群算法求解多目标优化问题[J]. 计算机研究与发展, 2004, 41(7): 1286-1291. Zhang Libiao, Zhou Chunguang, Ma Ming, et al.Solutions of multi objective optimization problems based on particle swarm optimization[J]. Journal of Computer Research and Development, 2004, 41(7): 1286-1291. [19] 唐亚迪, 徐永海, 洪旺松. 基于模糊控制模型的电压暂降监测装置优化配置[J]. 电力自动化设备, 2015, 35(8): 65-71. Tang Yadi, Xu Yonghai, Hong Wangsong.Allocation optimization based on fuzzy control model for voltage-sag monitors[J]. Electric Power Automation Equipment, 2015, 35(8): 65-71. [20] 刘平, 欧阳森, 蔡东阳. 考虑变电站电压暂降严重性的暂降监测装置优化配置[J]. 电网技术, 2016, 40(2): 634-641. Liu Ping, Ouyang Sen, Cai Dongyang.Research on the optimal configuration of sag monitoring devices by considering the voltage sag severity of substations[J]. Power System Technology, 2016, 40(2): 634-641. [21] 林涌艺, 邵振国, 张嫣, 等. 基于多测点正序电压相关性与典型模式匹配寻优的电压暂降源定位[J]. 电工技术学报, 2017, 32(17): 35-46. Lin Yongyi, Shao Zhenguo, Zhang Yan, et al.Voltage sag source location based on the correlation of multipoint positive sequence voltage and the typical pattern matching optimization[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 35-46. [22] Park C H, Jang G.Stochastic estimation of voltage sags in a large meshed network[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1655-1664. [23] 孙国强, 卫志农, 唐利锋, 等. 多目标配电网故障定位的Pareto进化算法[J]. 电力自动化设备, 2012, 32(5): 57-61, 73. Sun Guoqiang, Wei Zhinong, Tang Lifeng, et al.Pareto evolutionary algorithm for multi-objective fault location of distribution network[J]. Electric Power Automation Equipment, 2012, 32(5): 57-61, 73. [24] Kennedy J, Eberhart R C.A discrete binary version of the particle swarm algorithm[J]. Computational Cybernetics and Simulation, 1997, 5: 4104-4108. [25] 王荣海, 胥勋涛, 申慧. 基于粒子群优化算法的多目标搜索算法[J]. 兵工自动化, 2013, 32(1): 24-27. Wang Ronghai, Xu Xuntao, Shen Hui.Multi-objective searching algorithm based on particle swarm optimization[J]. Ordnance Industry Automation, 2013, 32(1): 24-27. |