|
|
Flexible Model Predictive Control with Peak Current Limitation for Grid-Connected Inverter under Unbalanced Grid Voltage |
Jin Tao1, Shen Xueyu1, Su Taixin1, Guo Jingdong2 |
1. Fujian Key Laboratory of New Energy Generation and Power Conversion Fuzhou University Fuzhou 350116 China; 2. State Grid Fujian Electric Power Research Institute Fuzhou 350007 China |
|
|
Abstract In order to overcome the problem of power fluctuation and over-current in grid-connected inverters under unbalanced grid voltage, a flexible unbalanced control strategy based on model predictive control with peak current limitation for grid-connected inverters is proposed. This method is aimed at balancing the current, eliminating active and reactive power oscillations to design a current reference generator. The quantitative relationship between the power reference set value and the peak output current value is obtained through the power reference generator to guide the power reference setting under unbalanced grid voltage. On this basis, the control strategy of grid-connected model predictive current based on reference voltage to establish cost function method is given, and the reference current is accurately tracked. Simulation and experimental results show that the proposed method can flexibly realize the control of output current balance, active or reactive power constant under unbalanced grid voltage, and the current peak is limited effectively under the balance current, constant active and reactive power mode.
|
Received: 23 April 2018
Published: 14 June 2019
|
|
|
|
|
[1] Yang Fang, Yang Lihui, Ma Xikui.An advanced control strategy of PV system for low-voltage ride-through capability enhancement[J]. Solar Energy, 2014, 109: 24-35. [2] 林永朋, 陶顺, 肖湘宁. 电压不平衡条件下并网逆变器的直流电压控制[J]. 电网技术, 2015, 39(6): 1643-1649. Lin Yongpeng, Tao Shun, Xiao Xiangning.DC voltage control of grid-connected inverters under imbalanced voltage[J]. Power System Technology, 2015, 39(6): 1643-1649. [3] 阳同光, 桂卫华. 电网不平衡情况下并网逆变器控制策略综述[J]. 电工技术学报, 2015, 30(14): 241-246. Yang Tongguang, Gui Weihua.An overview on control strategies of grid-connected inverter under unbalanced voltage conditions[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 241-246. [4] 胡书举, 孟岩峰, 李丰林, 等. 电网电压不平衡时逆变器无交流电压传感器控制策略[J]. 电工技术学报, 2017, 32(24): 146-152. Hu Shuju, Meng Yanfeng, Li Fenglin, et al.AC voltage sensorless control strategy of grid-connected inverter under unbalanced grid voltage[J]. Transactions of China Electrotechnical Society, 2017, 32(24): 146-152. [5] Castilla M, Miret J, Camacho A, et al.Modeling and design of voltage support control schemes for three-phase inverters operating under unbalanced grid conditions[J]. IEEE Transactions on Power Electronics, 2014, 29(11): 6139-6150. [6] 伞国成, 漆汉宏, 魏艳君, 等. 基于复功率的电网电压不平衡条件下并网逆变器控制策略[J]. 电工技术学报, 2017, 32(8): 229-236. San Guocheng, Qi Hanhong, Wei Yanjun, et al.Complex power based control strategy of grid-connected inverter under unbalanced grid voltage conditions[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 229-236. [7] 张晓滨, 黄佳敏, 伍文俊, 等. 基于虚拟同步坐标变换的交流微电网并网逆变器电压相位和电流检测算法[J]. 电工技术学报, 2018, 33(13): 3119-3129. Zhang Xiaobin, Huang Jiamin, Wu Wenjun, et al.A voltage phase and current detection algorithm based on virtual synchronization frame for AC microgrid grid-connected inverters[J]. Transactions of China Electrotechnical Society, 2018, 33(13): 3119-3129. [8] 朱晓荣, 刘世鹏, 张海宁, 等. 不平衡电网电压下光伏并网逆变器滑模直接电压/功率控制策略[J]. 电力系统保护与控制, 2016, 44(23): 133-140. Zhu Xiaorong, Liu Shipeng, Zhang Haining, et al.Sliding mode control based direct voltage/power control strategy for PV grid connected inverter under unbalanced grid voltage[J]. Power System Protection and Control, 2016, 44(23): 133-140. [9] 翦志强, 司徒琴. 三相电压不对称跌落光伏并网逆变器控制方法[J]. 电力系统保护与控制, 2015, 43(14): 126-130. Jian Zhiqiang, Si Tuqin.Control method of photovoltaic grid-connected inverter under three-phase voltage unbalanced dips[J]. Power System Protection and Control, 2015, 43(14): 126-130. [10] 马临超, 蒋炜华, 薛宝星. NPC型三电平永磁同步风力发电并网逆变器模型预测控制满足低电压穿越要求研究[J]. 电力系统保护与控制, 2017, 45(16): 151-156. Ma Linchao, Jiang Weihua, Xue Baoxing.Model predictive current control of grid-connected neutral-point-clamped permanent magnet synchronous wind power inverters to meet low-voltage ride-through requirements[J]. Power System Protection and Control, 2017, 45(16): 151-156. [11] 熊飞, 吴俊勇, 郝亮亮, 等. 不对称电压跌落下逆变电源的多目标控制策略[J]. 电工技术学报, 2017, 32(1): 107-116. Xiong Fei, Wu Junyong, Hao Liangliang, et al.Multi-objective control strategies of grid interface inverter under unbalanced voltage sags[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 107-116. [12] Rodriguez P, Timbus A V, Teodorescu R, et al.Flexible active power control of distributed power generation systems during grid faults[J]. IEEE Transactions on Industrial Electronics, 2007, 54(5): 2583-2592. [13] Rodríguez P, Timbus A, Teodorescu R, et al.Reactive power control for improving wind turbine system behavior under grid faults[J]. IEEE Transactions on Power Electronics, 2009, 24(7): 1798-1801. [14] Wang F, Duarte J L, Hendrix M A M. Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips[J]. IEEE Transactions on Power Electronics, 2011, 26(5): 1511-1521. [15] Reyes M, Rodriguez P, Vazquez S, et al.Enhanced decoupled double synchronous reference frame current controller for unbalanced grid-voltage conditions[J]. IEEE Transactions on Power Electronics, 2012, 27(9): 3934-3943. [16] 章玮, 王宏胜, 任远, 等. 不对称电网电压条件下三相并网型逆变器的控制[J]. 电工技术学报, 2010, 25(12): 103-110. Zhang Wei, Wang Hongsheng, Ren Yuan, et a1. Investigation on control of three-phase grid-connected inverters under unbalanced grid voltage conditions[J]. Transactions of China Electrotechnical Society, 2010, 25(12): 103-110. [17] Camacho A, Castilla M, Miret J, et al.Flexible voltage support control for three-phase distributed generation inverters under grid fault[J]. IEEE Transactions on Industrial Electronics, 2012, 60(4): 1429-1441. [18] 郭小强, 张学, 卢志刚, 等. 不平衡电网电压下光伏并网逆变器功率/电流质量协调控制策略[J]. 中国电机工程学报, 2014, 34(3): 346-353. Guo Xiaoqiang, Zhang Xue, Lu Zhigang.Coordinate control of power and current quality for grid-connected PV inverters under unbalanced grid voltage[J]. Proceedings of the CSEE, 2014, 34(3): 346-355. [19] Miret J, Castilla M, Camacho A, et al.Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags[J]. IEEE Transactions on Power Electronics, 2012, 27(10): 4262-4271. [20] Afshari E, Moradi G R, Rahimi R, et al.Control strategy for three-phase grid connected PV inverters enabling current limitation under unbalanced faults[J]. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8908-8918. [21] 谭骞, 徐永海, 黄浩, 等. 不对称电压暂降情况下光伏逆变器输出电流峰值的控制策略[J]. 电网技术, 2015, 39(3): 601-608. Tan Qian, Xu Yonghai, Huang Hao, et al.A control strategy for peak output current of PV inverter under unbalanced voltage sags[J]. Power System Technology, 2015, 39(3): 601-608. [22] 郭小强, 刘文钊, 王宝诚, 等. 光伏并网逆变器不平衡故障穿越限流控制策略[J]. 中国电机工程学报, 2015, 35(20): 5155-5162. Guo Xiaoqiang, Liu Wenzhao, Wang Baocheng, et al.Fault ride through control of PV grid-connected inverter with current-limited capability under unbalanced grid voltage conditions[J]. Proceedings of the CSEE, 2015, 35(20): 5155-5162. [23] Guo Xiaoqiang, Liu Wenzhao, Lu Zhigang.Flexible power regulation and current-limited control of grid-connected inverter under unbalanced grid voltage faults[J]. IEEE Transactions on Industrial Electronics, 2017, 64(9): 7425-7432. [24] Zheng Tianwen, Chen Laijun, Guo Yan, et al.Flexible unbalanced control with peak current limitation for virtual synchronous generator under voltage sags[J]. Journal of Modern Power Systems & Clean Energy, 2017(2): 1-12. [25] 王治国, 郑泽东, 李永东, 等. 三相异步电机电流多步预测控制方法[J]. 电工技术学报, 2018, 33(9): 1975-1984. Wang Zhiguo, Zheng Zedong, Li Yongdong, et al.Predictive current control for three phase induction machine using multi-steps prediction horizon[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1975-1984. [26] Rodriguez J, Cortes P.Predictive control of power converters and electrical drives[M]. Hoboken: Wiley-IEEE Press, 2012. |
|
|
|