|
|
Research on Electromagnetic Problems in Electromagnetic Forming Process |
Qiu Li1, 2, Li Yantao1, Su Pan1, Xiong Qi1, Li Liang3 |
1. College of Electrical Engineering and New Energy China Three Gorges University Yichang 443002 China; 2. Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station China Three Gorges University Yichang 443002 China; 3. Wuhan National High Magnetic Field Center Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract Electromagnetic forming (EMF) is a high-speed pulsed forming technology, which has been extensively concerned because it can improve the material formability. The research on EMF mainly focuses on material problems and electromagnetic problems. Throughout the history of EMF, the material problems have been fully developed while the electromagnetic problems are relatively lagging behind. Based on the EMF principle, the new EMF technology are divided into three parts, including EMF by improving the distribution of electromagnetic force, EMF by changing the application of the electromagnetic force and EMF by combining electromagnetic forming with mechanical processing. The technical problems, the implementation plans, the forming results, the technical difficulties and the further research directions of each new EMF technology are chiefly discussed in this paper. Furthermore, the method to solve the problems of the structural strength and the temperature rise of the driving coil are also introduced, as a result, it can be found that the emergence of long-life driving coil is the prerequisite for EMF industrial application. Obviously, these researches on electromagnetic problems have driven the rapid development of EMF. In the further research, how to load the electromagnetic force flexibly and how to curb the temperature rise of the driving coil are being the two difficult problems to be solved in EMF.
|
Received: 08 May 2018
Published: 14 June 2019
|
|
|
|
|
[1] Okoye C N, Jiang J H, Hu Z D.Application of electromagnetic-assisted stamping (EAMS) technique in incremental sheet metal forming[J]. International Journal of Machine Tools & Manufacture, 2006, 46(11): 1248-1252. [2] Gies S, Tekkaya A E.Analytical prediction of Joule heat losses in electromagnetic forming coils[J]. Journal of Materials Processing Technology, 2017, 246: 102-115. [3] Li Liang, Han Xiaotao, Peng Tao, et al.Space-time-controlled multi-stage pulsed magnetic field forming and manufacturing technology[C]//The 5th International Conference on High Speed Forming, Dortmund, Germany, 2012: 53-58. [4] Kiliclar Y, Demir O K, Engelhardt M, et al.Experimental and numerical investigation of increased formability in combined quasi-static and high-speed forming processes[J]. Journal of Materials Processing Technology, 2016, 237: 254-269. [5] Bruschi S, Altan T, Banabic D, et al.Testing and modelling of material behaviour and formability in sheet metal forming[J]. CIRP Annals, 2014, 63(2): 727-749. [6] Cui Xiaohui, Mo Jianhua, Li Jianjun, et al.Effect of second current pulse and different algorithms on simulation accuracy for electromagnetic sheet forming[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(5-8): 1137-1146. [7] Cui Xiaohui, Mo Jianhua, Han Fei.3D Multi-physics field simulation of electromagnetic tube forming[J]. The International Journal of Advanced Manufacturing Technology, 2016, 59(5-8): 521-529. [8] Vivek A, Kim K H, Daehn G S.Simulation and instrumentation of electromagnetic compression of steel tubes[J]. Journal of Materials Processing Technology, 2011, 211(5): 840-850. [9] Woodward S, Weddeling C, Daehn G.Production of low-volume aviation components using disposable electromagnetic actuators[J]. Journal of Materials Processing Technology, 2011, 211(5): 886-895. [10] Yu Haiping, Xu Zhidan, Fan Zhisong, et al.Mechanical property and microstructure of aluminum alloy-steel tubes joint by magnetic pulse welding[J] Materials Science and Engineering A, 2013, 561: 259-265. [11] Meng Zhenghua, Huang Shangyu, Hu Jianhua, et al.Effects of process parameters on warm and electromagnetic hybrid forming of magnesium alloy sheets[J]. Journal of Materials Processing Technology, 2011, 211(5): 863-867. [12] Jie M, Cheng C H, Chan L C, et al.Forming limit diagrams of strain-rate-dependent sheet metals[J]. International Journal of Mechanical Sciences, 2009, 51(4): 269-275. [13] Iriondo E, Alcaraz J H, Daehn G S, et al.Shape calibration of high strength metal sheets by electromagnetic forming[J]. Journal of Manufacturing Processes, 2013, 15(2): 183-193. [14] Balanethiram V S, Daehn G S.Hyperplasticity: increased forming limits at high work-piece velocity[J]. Scripta Metallurgica, 1994, 30(4): 515-520. [15] Balanethiram V S, Hu X Y, Altynova M, et al.Hyperplasticity: enhanced formability at high rates[J]. Journal of Material Processing Technology, 1994, 45(1-4): 595-600. [16] Imbert J, Winkler S, Worswick M J, et al.The effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet[J]. Journal of Engineering Materials and Technology, 2005, 127(1): 145-153. [17] Chen Qi, Han Xiaotao, Wu Jiawei, et al.Mechanism of high velocity electromagnetic deformation of Al-Mg alloy[J]. Philosophical Magazine, 2017, 97(1): 69-83. [18] Lee W S, Chen T H.Mechanical and microstructural response of aluminum-scandium (Al-Sc) alloy as a function of strain rate and temperature[J]. Materials Chemistry and Physics, 2009, 113(2-3): 734-745. [19] Lee W S, Lin C F, Chen T H, et al.High strain rate deformation of Ti-15Mo-5Zr-3Al alloy over wide temperature range[J]. Materials Science and Technology, 2008, 24(1): 15-25. [20] Bach F W, Bormann D, Walden L.Influence of forming rate on the microstructure and properties of materials subjected to electromagnetic forming-a synopsis[C]//Proceedings of 3rd International Conference on High Speed Forming, Dortmund, 2008: 55-64. [21] Ferreira P J, Sande J B V, Fortes M A, et al. Microstructure development during high-velocity deformation[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35(10): 3091-3101. [22] Tian Yi, Huang Liang, Ma Huijuan, et al.Establishment and comparison of four constitutive models of 5A02 aluminium alloy in high-velocity forming process[J]. Materials & Design, 2014, 54: 587-597. [23] Yan Siliang, Yang He, Li Hongwei, et al.A unified model for coupling constitutive behavior and micro-defects evolution of aluminum alloys under high-strain-rate deformation[J]. International Journal of Plasticity, 2016, 85: 203-229. [24] Thibaudeau E, Kinsey B L.Analytical design and experimental validation of uniform pressure actuator for electromagnetic forming and welding[J]. Journal of Materials Processing Technology, 2015, 215: 251-263. [25] Kiliclar Y, Demir O K, Vladimirov I N.Combined simulation of quasi-static deep drawing and electromagnetic forming by means of a coupled damage-viscoplasticity model at finite strains[C]//The 5th International Conference on High Speed Forming, Dortmund, Germany, 2012: 325-333. [26] Li Liang, Han Xiaotao, Peng Tao, et al.Space-time-controlled multi-stage pulsed magnetic field forming and manufacturing technology[C]//The 5th International Conference on High Speed Forming, Dortmund, Germany, 2012: 53-58. [27] Daehn G S.High velocity metal forming[J]. Metalworking: sheet forming (ASM Handbook Volume 14 B), 2006, 14: 405-418. [28] Psyk V, Risch D, Kinsey B L, et al.Electromagnetic forming-a review[J]. Journal of Materials Processing Technology, 2011, 211(5): 787-829. [29] Chu Y Y, Lee R S, Psyk V, et al.Determination of the flow curve at high strain rates using electromagnetic punch stretching[J]. Journal of Materials Processing Technology, 2012, 212(6): 1314-1323. [30] Kamal M, Shang J, Cheng V, et al.Agile manufacturing of a micro-embossed case by a two-step electromagnetic forming process[J]. Journal of Materials Processing Technology, 2007, 190(1): 41-50. [31] 于海平. 电磁缩径失稳判据及变形分析[D]. 哈尔滨: 哈尔滨工业大学, 2006. [32] Cao Quanliang, Han Xiaotao, Lai Zhipeng, et al.Effects of current frequency on electromagnetic sheet metal forming process[J]. IEEE Transactions on Applied Superconductivity, 2013, 24(3): 1-4. [33] Jiang Fan, Sun Quqin, Lai Zhipeng, et al.Electromagnetically driven expanding ring test for the strength study of the zylon/epoxy composite[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-6. [34] Qiu Li, Han Xiaotao, Xiong Qi, et al.Effect of workpiece motion on forming velocity in electromagnetic forming[C]//The 5th International Conference on High Speed Forming (ICHSF2012), Dortmund, Germany, 2012: 103-112. [35] Golowin S, Kamal M, Shang J, et al.Application of a uniform pressure actuator for electromagnetic processing of sheet metal[J]. Journal of Materials Engineering and Performance, 2007, 16(4): 455-460. [36] Cao Quanliang, Li Liang, Lai Zhipeng, et al.Dynamic analysis of electromagnetic sheet metal forming process using finite element method[J]. International Journal of Advanced Manufacturing Technology, 2014, 74(1-4): 361-368. [37] Yu Haiping, Fan Zhisong, Li Chunfeng.Magnetic pulse cladding of aluminum alloy on mild steel tube[J]. Journal of Materials Processing Technology, 2014, 214(2): 141-150. [38] Gayakwad D, Dargar M K, Sharma P K, et al.A review on electromagnetic forming process[J]. Procedia Materials Science, 2014, 6: 520-527. [39] Qiu Li, Xiao Yao, Deng Changzheng, et al.Electromagnetic-structural analysis and improved loose coupling method in electromagnetic forming process[J]. International Journal of Advanced Manufacturing Technology, 2016, 89(1-4): 1-10. [40] Kamal M, Daehn G S.A uniform pressure electromagnetic actuator for forming flat sheets[J]. Journal of Manufacturing Science and Engineering, 2007, 129(2): 369-379. [41] Golowin S, Kamal M, Shang J, et al.Application of a uniform pressure actuator for electromagnetic processing of sheet metal[J]. Journal of Materials Engineering & Performance, 2007, 16(4): 455-460. [42] Weddeling C, Hahn M, Daehn G S, et al.Uniform pressure electromagnetic actuator - an innovative tool for magnetic pulse welding[C]//International Conference on Manufacturing of Lightweight Components- Manulight, Dortmund, 2014: 156-161. [43] 邱立.一种高效率板件电磁成形方法及装置:中国, CN105880348 A[P].2016-05-21. [44] Li Zhipeng, Han Xiaotao, Cao Quanliang, et al.Design, fabrication, and test of a high-strength uniform pressure actuator[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [45] Lai Zhipeng, Han Xiaotao, Cao Quanliang, et al.The electromagnetic flanging of a large-scale sheet workpiece[J]. IEEE Transactions on Applied Superconductivity, 2013, 24(3): 1-5. [46] Qiu Li, Yu Yijie, Yang Yuqi, et al.Analysis of electromagnetic force and experiments in electromagnetic forming with local loading[J]. International Journal of Applied Electromagnetics & Mechanics, 2018, 57(1): 29-37. [47] Ahmed M, Panthi S K, Ramakrishnan N, et al.Alternative flat coil design for electromagnetic forming using FEM[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(3): 618-625. [48] Qiu Li, Yu Yijie, Xiong Qi, et al.Analysis of electromagnetic force and deformation behavior in electromagnetic tube expansion with concave coil based on finite element method[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 1-5. [49] Lai Zhipeng, Cao Quanliang, Zhang Bo, et al.Radial Lorentz force augmented deep drawing for large drawing ratio using a novel dual-coil electromagnetic forming system[J]. Journal of Materials Processing Technology, 2015, 222: 13-20. [50] Lai Zhipeng, Cao Quanliang, Han Xiaotao, et al.Investigation on plastic deformation behavior of sheet workpiece during radial Lorentz force augmented deep drawing process[J]. Journal of Materials Processing Technology, 2017, 245: 193-206. [51] 赖智鹏. 多时空脉冲强磁场金属板材电磁成形研究[D]. 武汉: 华中科技大学, 2017. [52] Zhang Xiao, Cao Quanliang, Han Xiaotao, et al.Application of triple-coil system for improving deformation depth of tube in electromagnetic forming[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-4. [53] Cui Xiaohui, Li Jianjun, Mo Jianhua, et al.Incremental electromagnetic-assisted stamping (IEMAS) with radial magnetic pressure: a novel deep drawing method for forming aluminum alloy sheets[J]. Journal of Materials Processing Technology, 2016, 233: 79-88. [54] Thomas J D, Seth M, Daehn G S, et al.Forming limits for electromagnetically expanded aluminum alloy tubes: theory and experiment[J]. Acta Materialia. 2007, 55(8): 2863-2873. [55] Qiu Li, Yu Yijie, Wang Ziwei, et al.Analysis of electromagnetic force and deformation behavior in electromagnetic forming with different coil systems[J]. International Journal of Applied Electromagnetics & Mechanics, 2018, 57(3): 337-347. [56] 肖遥. 轴向压缩式管件磁脉冲胀形电磁力分布规律与材料成形实验研究[D]. 宜昌: 三峡大学, 2017. [57] Cui Xiaohui, Mo Jianhua, Li Jianjun, et al.Tube bulging process using multidirectional magnetic pressure[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(5-8): 2075-2082. [58] Cao Quanliang, Lai Zhipeng, Xiong Qi, et al.Electromagnetic attractive forming of sheet metals by means of a dual-frequency discharge current: design and implementation[J]. International Journal of Advanced Manufacturing Technology, 2016, 90(1-4): 1-8. [59] Xiong Qi, Tang Hongtao, Deng Changzhen, et al.Electromagnetic attraction-based Bulge forming in small tubes: fundamentals and simulations[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(3): 0600505. [60] 熊奇. 大尺寸铝合金板件电磁成形设计与实现[D]. 武汉: 华中科技大学, 2016. [61] 朱英伟, 雷勇, 周群, 等. 径向磁场与环向电流作用的电磁发射模式[J]. 电工技术学报, 2016, 31(18): 54-58. Zhu Yingwei, Lei Yong, Zhou Qun, et al.Multipole field electromagnetic launch model based on radial magnetic field interact with loop eddy current[J]. Transactions on China Electrotechnical Society, 2016, 31(18): 54-58. [62] 吴德会, 何天府, 王晓红, 等. 感应电能传输中矩形螺线线圈互感耦合的解析建模与分析[J]. 电工技术学报, 2018, 33(3): 680-688. Wu Dehui, He Tianfu, Wang Xiaohong, et al.Analytical modeling and analysis of mutual inductance coupling of rectangular spiral coils in inductive power transfer[J]. Transactions on China Electrotechnical Society, 2018, 33(3): 680-688. [63] Lai Zhipeng, Han Xiaotao, Cao Quanliang, et al.The electromagnetic flanging of a large-scale sheet workpiece[J]. IEEE Transactions on Applied Superconductivity, 2013, 24(3): 1-5. [64] 陈桂涛, 钟彦儒, 孙强, 等. 一种基于耦合电感的非对称脉冲电路[J]. 电工技术学报, 2017, 32(24): 1-8. Chen Guitao, Zhong Yanru, Sun Qiang, et al.An asymmetric bipolar pulse circuit based on coupled inductor[J]. Transactions on China Electrotechnical Society, 2017, 32(24): 1-8. [65] 莫健华.板材动圈电磁渐进成形方法及其装置: 中国, CN1821910[P].2006-03-07. [66] Cui Xiaohui, Mo Jianhua, Li Jianjun, et al.Electromagnetic incremental forming (EMIF): a novel aluminum alloy sheet and tube forming technology[J]. Journal of Materials Processing Technology, 2014, 214: 409-427. [67] Cui Xiaohui, Mo Jianhua, Li Jianjun, et al.Large-scale sheet deformation process by electromagnetic incremental forming combined with stretch forming[J]. Journal of Materials Processing Technology, 2016, 237: 139-154. [68] 崔晓辉. 电磁脉冲成形多物理场耦合数值模拟及实验研究[D]. 武汉: 华中科技大学, 2013. [69] Su Hongliang, Huang Liang, Li Jianjun, et al.Two-step electromagnetic forming: a new forming approach to local features of large-size sheet metal parts[J]. International Journal of Machine Tools & Manufacture, 2018, 124: 96-116. [70] Shang Jianhui.Electromagnetically assisted sheet metal stamping[D]. Columbus, OH: The Ohio State University, 2006. [71] Shang Jianhui, Daehn Glenn.Electromagnetically assisted sheet metal stamping[J]. Journal of Materials Processing Technology, 2011, 211(3): 868-874. [72] 邱立. 一种快速冷却板件电磁驱动成形方法及装置: 中国, CN107008798A[P].2017-05-02. [73] Golovashchenko S.Material formability and coil design in electromagnetic forming[J]. Journal of Materials Engineering and Performance, 2007, 16(3): 314-320. [74] Qiu Li, Han Xiaotao, Tao Han, et al.Design and experiments of a high field electromagnetic forming system[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 3700504. [75] Gies S, Löbbe C, Weddeling C, et al.Thermal loads of working coils in electromagnetic sheet metal forming[J]. Journal of Materials Processing Technology, 2014, 214(11): 2553-2565. [76] Golovashchenko S, Bessonov N, Davies R.Design and testing of coils for pulsed electromagnetic forming[C]// 2nd International conference on High Speed Forming, Dortmund, Germany, 2006: 141-151. [77] Cao Quanliang, Han Xiaotao, Lai Zhipeng, et al.Analysis and reduction of coil temperature rise in electromagnetic forming[J]. Journal of Materials Processing Technology, 2015, 225: 185-194. |
|
|
|