|
|
Effects of Pulse Parameters on Dry Reforming of CH4 by Pulsed DBD Plasma |
Wang Xiaoling1, 2, Gao Yuan2, Zhang Shuai2, Sun Hao2, 3, Li Jie1, Shao Tao2, 3 |
1. School of Electrical Engineering Dalian University of Technology Dalian 116024 China; 2. Key Laboratory of Power Electronics and Electric Drive Chinese Academy of SciencesBeijing 100190 China; 3. University of Chinese Academy of Sciences Beijing 100049 China |
|
|
Abstract Dry reforming of methane (DRM) is a technology that converts methane and carbon dioxide into valuable chemicals and clean fuels. It is an effective way to reduce greenhouse gas emissions and mitigate Greenhouse effect. Non-thermal plasma (NTP) can effectively avoid the problems of high cost and high operating temperature in traditional thermal methods, which is considered as an alternative way for DRM. The DRM process driven by microsecond pulsed dielectric barrier discharge (DBD) plasma was studied in this paper. By changing the repetition frequency and pulse width, the effects of different discharge parameters on the conversion characteristics of DRM were investigated. The results show that the main gaseous products of DRM reaction are syngas (H2&CO) and C2H6. CH4&CO2 conversions and the syngas yields increase with the increase of repetition frequency; however, more carbon and liquid hydrocarbons are produced at higher repetition frequency, which leads to the decrease of hydrogen and carbon balance. While with longer pulse width, higher current amplitude of secondary discharge during voltage falling edge can be obtained, which is favorable for promoting the conversion of CH4&CO2 into syngas.
|
Received: 27 March 2018
Published: 29 March 2019
|
|
|
|
|
[1] Quéré C L, Andrew R M, Friedlingstein P, et al.Global Carbon Budget 2017[J]. Earth System Science Data, 2018, 10(1): 405-448. [2] Wang Li, Yi Yanhui, Wu Chunfei, et al.One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma- driven catalysis[J]. Angewandte Chemie, 2017, 56(44): 13679-13683. [3] Pakhare D, Spivey J.A review of dry (CO2) refor- ming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014, 43(22): 7813-7837. [4] 荣命哲, 刘定新, 李美, 等. 非平衡态等离子体的仿真研究现状与新进展[J]. 电工技术学报, 2014, 29(6): 271-282. Rong Minzhe, Liu Dingxin, Li Mei, et al.Research status and new progress on the numerical simulation of non-equilibrium plasma[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 271-282. [5] 张凯, 王瑞雪, 韩伟, 等. 等离子体重油加工技术研究进展[J]. 电工技术学报, 2016, 31(24): 1-15. Zhang Kai, Wang Ruixue, Han Wei, et al.Progress of heavy oil processing by plasma technology[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 1-15. [6] 戴栋, 宁文军, 邵涛. 大气压低温等离子体的研究现状与发展趋势[J]. 电工技术学报, 2017, 32(20): 1-9. Dai Dong, Ning Wenjun, Shao Tao.Review on the state of art and future trends of atmospheric pressure low temperature plasmas[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 1-9. [7] 邵涛, 章程, 王瑞雪, 等. 大气压脉冲气体放电与等离子体应用[J]. 高电压技术, 2016, 42(3): 685-705. Shao Tao, Zhang Cheng, Wang Ruixue, et al.Atmospheric-pressure pulsed gas discharge and pulsed plasma application[J]. High Voltage Engineering, 2016, 42(3): 685-705. [8] Martini L M, Dilecce G, Guella G, et al.Oxidation of CH4 by CO2 in a dielectric barrier discharge[J]. Chemical Physics Letters, 2014, 593: 55-60. [9] 丁玉柱, 夏胜国, 王琼芳, 等. 介质阻挡放电对甲烷离解及燃烧火焰的影响[J]. 中国电机工程学报, 2011, 31(31): 204-210. Ding Yuzhu, Xia Shengguo, Wang Qiongfang, et al.Effect of dielectric barrier discharge on methane dissociation and combustion[J]. Proceedings of the CSEE, 2011, 31(31): 204-210. [10] Ray D, Reddy P M K, Challapalli S. Glass beads packed DBD-plasma assisted dry reforming of methane[J]. Topics in Catalysis, 2017, 60(12): 869-878. [11] 白敏冬, 朱晓峰, 白敏菂, 等. 大气压DBD甲烷二氧化碳转化方法研究[J]. 北京理工大学学报, 2005, 25(增刊1): 217-221. Bai Mindong, Zhu Xiaofeng, Bai Mindi, et al.Study on methane and carbon dioxide conversion using DBD at atmospheric pressure[J]. Journal of Beijing Institute of Technology, 2005, 25(S1): 217-221. [12] Snoeckx R, Zeng Yuxuan, Tu Xin, et al.Plasma- based dry reforming: improving the conversion and energy efficiency in a dielectric barrier discharge[J]. RSC Advances, 2015, 38(5): 29799. [13] Ozkan A, Dufour T, Arnoult G, et al.CO2-CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge[J]. Journal of CO2 Utilization, 2015, 9: 74-81. [14] 林浩凡, 王瑞雪, 谢庆, 等. 等离子体射流快速改性促进表面电荷衰减[J]. 电工技术学报, 2017, 32(16): 256-264. Lin Haofan, Wang Ruixue, Xie Qing, et al.Rapid surface modification by plasma jet to promote surface charge decaying[J]. Transactions of China Electro- technical Society, 2017, 32(16): 256-264. [15] 高远, 张帅, 刘峰, 等. 脉冲介质阻挡放电等离子体催化CH4直接转化[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng, et al.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electro- technical Society, 2017, 32(2): 61-69. [16] Duan Lijuan, Jiang Nan, Lu Na, et al.Synergetic effect of TiO2, and Fe3+, as co-catalysts for enhanced phenol degradation in pulsed discharge system[J]. Applied Catalysis B Environmental, 2018, 221: 521-529. [17] Hussain A, Khoja, Muhammad, et al.Dry reforming of methane using different dielectric materials and DBD plasma reactor configurations[J]. Energy Conversion & Management, 2017, 144: 262-274. [18] 潘俊, 方志. 多脉冲均匀介质阻挡放电特性的仿真及实验研究[J]. 高电压技术, 2012, 38(5): 1132-1140. Pan Jun, Fang Zhi.Simulation and experimental studies on discharge characteristics of multiple pulse homogeneous dielectric barrier discharge[J]. High Voltage Engineering, 2012, 38(5): 1132-1140. [19] 牛宗涛, 章程, 王瑞雪, 等. 脉冲重复频率对微秒脉冲滑动放电特性影响的实验研究[J]. 电工技术学报, 2016, 31(19): 191-198. Niu Zongtao, Zhang Cheng, Wang Ruixue, et al.Experimental study on the effect of the pulse repetition frequency on the characteristics of microsecond-pulse gliding discharges[J]. Transa- ctions of China Electrotechnical Society, 2016, 31(19): 191-198. [20] 张凯, 王瑞雪, 高远, 等. 微秒和纳秒脉冲激励下甲烷DBD电学特性研究[J]. 高压电器, 2017, 53(4): 5-12. Zhang Kai, Wang Ruixue, Gao Yuan, et al.Electric characteristics research of methane discharge based on DBD Reactor under microsecond and nanosecond pulse power sources[J]. High Voltage Apparatus, 2017, 53(4): 5-12. [21] Kozák T, Bogaerts A.Splitting of CO2 by vibrational excitation in non-equilibrium plasmas: a reaction kinetics model[J]. Plasma Sources Science Tech- nology, 2014, 23(4): 045004. [22] Ghorbanzadeh A M, Modarresi H.Carbon dioxide reforming of methane by pulsed glow discharge at atmospheric pressure: the effect of pulse com- pression[J]. Journal of Applied Physics, 2007, 101(12): 123303. [23] Mignard D, Sahibzada M, Duthie J M, et al.Methanol synthesis from flue-gas CO2, and renewable elec- tricity: a feasibility study[J]. International Journal of Hydrogen Energy, 2003, 28(4): 455-464. [24] Zhang Xuming, Cha Min Suk.Electron-induced dry reforming of methane in a temperature-controlled dielectric barrier discharge reactor[J]. Journal of Physics D: Applied Physics, 2013, 46(41): 415205. |
|
|
|