|
|
Decoupling Analysis of Permanent Magnet Synchronous Motor Current Controller by Dynamic Relative Gain Array |
An Zhikai, Wang Chenchen, Gou Lifeng |
School of Electrical Engineering Beijing Jiaotong University Beijing 100044 China |
|
|
Abstract The electrical system of a Permanent Magnet Synchronous Motor (PMSM) can be expressed as a dual-input-dual-output (DIDO) system with cross-coupling by dq transformation. Some current controllers, including direct compensation decoupling controller, matrix diagonalization decoupling controller and state feedback decoupling controller, have been proposed to decouple the cross-coupling term which has a serious impact on control performance. However, there is no uniform and intuitive way to compare the decoupling performance of different controllers. As a measure of interactions for multivariable, dynamic relative gain array (DRGA) is introduced to analyze the current decoupling performance of PMSM with different controllers in this paper. The simulation and experimental results show that the proposed method can effectively analyze the decoupling performance.
|
Received: 08 April 2018
Published: 29 March 2019
|
|
|
|
|
[1] Kim H, Lorenz R D.Synchronous frame PI current regulators in a virtually translated system[C]// Conference Record of the 2004 IEEE Industry Applications Conference, 39th IAS Annual Meeting, Seattle, WA, USA, 2004, 2: 856-863. [2] Lorenz R D, Lawson D B. Performance of feedforward current regulators for field-oriented induction machine controllers[J]. IEEE Transactions on Industry Applications, 2008, IA-23(4): 597-602. [3] Yuenan, Z, Duoshen, F, Chen Boshi. A speed calculation method for induction motor based on voltage decoupling control principle[C]//Proceedings of the IEEE Power Conversion Conference, Nagaoka, Japan, 1997, 2: 573-578. [4] Rowan T M, Kerkman R J. A new synchronous current regulator and an analysis of current-regulated PWM inverters[J]. IEEE Transactions on Industry Applications, 1986, IA-22(4): 678-690. [5] Jung J, Nam K.A dynamic decoupling control scheme for high-speed operation of induction motors[J]. IEEE Transactions on Industrial Elec- tronics, 1999, 46(1): 100-110. [6] Harnefors L, Nee H P.Model-based current control of AC machines using the internal model control method[J]. IEEE Transactions on Industry Appli- cations, 1998, 34(1): 133-141. [7] 齐丽英, 王琛琛, 周明磊, 等. 一种异步电机的电流环解耦控制方法[J]. 电工技术学报, 2014, 29(5): 174-180. Qi Liying, Wang Chenchen, Zhou Minglei, et al.A decoupling current control scheme for induction machine controllers[J]. Transactions of China Elec- trotechnical Society, 2014, 29(5): 174-180. [8] Briz F, Degner M W, Lorenz R D.Dynamic analysis of current regulators for AC motors using complex vectors[J]. IEEE Industry Applications Society, 1999, 35(6): 1424-1432. [9] Briz F, Degner M W, Lorenz R D.Analysis and design of current regulators using complex vectors[J]. IEEE Transactions on Industry Applications, 2000, 36(3): 817-825. [10] Cheng S K, Yan-Jun Y U, Chai F, et al. Analysis of the inductances of interior permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2009, 29(18): 94-99. [11] 杨明, 付博, 李钊, 等. 永磁同步电动机矢量控制电压解耦控制研究[J]. 电气传动, 2010, 40(5): 24-28. Yang Ming, Fu Bo, Li Zhao, et al.Research on voltage decoupling control of vector control for permanent magnet synchronous motor[J]. Electric Drive, 2010, 40(5): 24-28. [12] 苏玲宏, 基于FPGA的高性能永磁同步电机电流控制器研究[D]. 武汉: 华中科技大学, 2014. Su Linghong.FPGA-based high-performance current controller for permanent magnet synchronous motor[D]. Wuhan, Huazhong University of Science and Technology, 2014. [13] 吴荒原, 王双红, 辜承林, 等. 内嵌式永磁同步电机改进型解耦控制[J]. 电工技术学报, 2015, 30(1): 30-37. Wu Huangyuan, Wang Shuanghong, Gu Chenglin, et a1. An improved decoupling control strategy for the IPMSMS[J]. Transactions of China Electrotechnical Society, 2015, 30(1): 30-37. [14] 刘栋良, 任劲松, 林伟杰, 等. 基于电感辨识的电流解耦算法在内置式永磁同步电机弱磁控制中的应用[J]. 电工技术学报, 2017, 32(16): 98-105. Liu Dongliang, Ren Jinsong, Lin Weijie, et al.Current decoupling algorithm based on inductance identification in the application of interior permanent magnet synchronous motor flux-weakening control[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 98-105. [15] 郭希铮, 游小杰, 王晓丹. 永磁同步电机电流调节器动态特性改进方法分析[J]. 电力自动化设备, 2011, 31(6): 39-44. Guo Xizheng, You Xiaojie, Wang Xiaodan.Improvement of current regulator dynamic characteristic for PMSM[J]. Electric Power Automation Equipment, 2011, 31(6): 39-44. [16] Jeong Y, Sul S K.Analysis and design of a decoupling current controller for AC machines: a unified transfer-matrix approach[C]//Fourtieth IAS Annual Meeting, Conference Record of the 2005 Industry Applications Conference, Hong Kong, China, 2005, 1: 751-758. [17] Bristol E.On a new measure of interaction for multivariable process control[J]. IEEE Transactions on Automatic Control, 2003, 11(1): 133-134. [18] Tung L S, Edgar T F.Analysis of control-output interactions in dynamic systems[J]. Aiche Journal, 1981, 27(4): 690-693. [19] Skogestad S, Postlethwaite I.Multivariable feedback control: analysis and design[M]. New York: Wiley, 2007. [20] 杨宗军, 王莉娜. 表贴式永磁同步电机的多参数在线辨识[J]. 电工技术学报, 2014, 29(3): 111-118. Yang Zongjun, Wang Lina.Online multi-parameter identification for surface-mounted permanent magnet synchronous motors[J]. Transactions of China Elec- trotechnical Society, 2014, 29(3): 111-118. [21] Blasko V, Kaura V, Niewiadomski W.Sampling of discontinuous voltage and current signals in electrical drives: a system approach[J]. IEEE Transactions on Industry Applications, 1998, 34(5): 1123-1130. |
|
|
|