|
|
Constrained Model Predictive Control for Bidirectional DC-DC Converter of Electric Vehicles |
Xiao Zhiming, Chen Qihong, Zhang Liyan |
School of Automation Wuhan University of Technology Wuhan 430070 China |
|
|
Abstract In order to improve the response speed and reliability of bidirectional DC-DC converters in electric vehicles, a constrained model predictive control (MPC) based on particle swarm optimization was proposed to apply to interleaved parallel bidirectional DC-DC converter. Based on the system transfer function, a predictive model for bidirectional DC-DC converter in Buck mode was established. Then, the principle of the constraint model predictive control algorithm was analyzed, and added constraints to control variables. The particle swarm optimization algorithm was used to solve the constraint prediction control optimization problem so that the speed solution was improved. The simulation was carried out with Matlab/Simulink, and the experimental platform was built. The simulation results and experimental results of constraint prediction control, PI control and unconstrained predictive control were analyzed and compared. Simulation and experimental results show that the converter with constrained model predictive control has better dynamic response performance and steady state performance, and the algorithm is feasible and effective.
|
Received: 08 July 2018
Published: 15 February 2019
|
|
|
|
|
[1] 胡斯登, 梁梓鹏, 范栋琦, 等. 基于Z源变换器的电动汽车超级电容-电池混合储能系统[J]. 电工技术学报, 2017, 32(8): 247-255. Hu Sideng, Liang Shupeng, Fan Dongqi, et al.A supercapacitor-battery hybrid energy storage system for electric vehicles based on Z-source converter[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 247-255. [2] 闫晓金, 潘艳, 齐建玲. 复合电源用双向DC/DC变换器的选型与设计[J]. 电气技术, 2009, 10(11): 52-54. Yan Xiaojin, Pan Yan, Qi Jianling.Selection and design of bidirectional DC/DC converters for com- posite power supply[J]. Electrical Engineering, 2009, 10(11): 52-54. [3] 武伟, 谢少军. 用于轨道交通超级电容储能的双向DC/DC变换器拓扑分析与比较[J]. 电工技术学报, 2013, 28(8): 406-416. Wu Wei, Xie Shaojun.Topology analysis and comparison of bidirectional DC/DC converters for rail transit supercapacitor energy storage[J]. Transa- ctions of China Electrotechnical Society, 2013, 28(8): 406-416. [4] 桑丙玉, 陶以彬, 郑高, 等. 超级电容-蓄电池混合储能拓扑结构和控制策略研究[J]. 电力系统保护与控制, 2014, 42(2): 1-6. Sang Bingyu, Tao Yibin, Zheng Gao, et al.Research on topological structure and control strategy of hybrid capacitor-battery hybrid energy storage[J]. Power System Protection and Control, 2014, 42(2): 1-6. [5] 刘宿城, 甘洋洋, 刘晓东, 等. 超级电容接口双向DC-DC变换器的电压快恢复控制策略[J]. 电工技术学报, 2018, 33(23): 5496-5508. Liu Sucheng, Gan Yangyang, Liu Xiaodong, et al.Fast voltage recovery control strategy for super- capacitor interfacing bidirectional DC-DC converter[J]. Transactions of China Electrotechnical Society, 2018, 33(23): 5496-5508. [6] 孙孝峰, 刘飞龙, 熊亮亮, 等. 双Buck/Boost集成双有源桥三端口DC-DC变换器[J]. 电工技术学报, 2016, 31(22): 73-82. Sun Xiaofeng, Liu Feilong, Xiong Liangliang, et al.Double Buck/Boost integrated dual active bridge three-port DC-DC converter[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 73-82. [7] Cheng K H, Hsu C F, Lin C M, et al.Fuzzy-neural sliding-mode control for DC-DC converters using asymmetric gaussian membership functions[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1528-1536. [8] 罗博, 陈丽华, 李勇, 等. 基于滑模控制的感应耦合电能传输系统输出电压控制研究[J]. 电工技术学报, 2017, 32(23): 235-242. Luo Bo, Chen Lihua, Li Yong, et al.Study on output voltage control of inductively coupled power transfer system based on sliding mode control[J]. Transa- ctions of China Electrotechnical Society, 2017, 32(23): 235-242. [9] Cortes P, Kazmierkowski M P, Kennel R M, et al.Predictive control in power electronics and drives[J]. IEEE Transactions on Industrial Electronics, 2008, 55(12): 4312-4324. [10] 杨捷, 顾冬冬, 孙明浩, 等. 三相光伏并网逆变器多目标优化模型预测控制[J]. 电力系统保护与控制, 2016, 44(15): 112-119. Yang Jie, Gu Dongdong, Sun Minghao, et al.Multi- objective optimization model predictive control of three-phase photovoltaic grid-connected inverters[J]. Power System Protection and Control, 2016, 44(15): 112-119. [11] Feng Guang, Meyer Eric, Liu Yanfei.A new digital control algorithm to achieve optimal dynamic perfor- mance in DC-to-DC converters[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 1489-1498. [12] 朱娜娜. 模型预测控制简化算法的研究[D]. 杭州: 浙江大学, 2011. [13] Pirooz A, Noroozian R.Model predictive control of classic bidirectional DC-DC converter for battery applications[C]//2016 7th Power Electronics and Drive Systems Technologies Conference, Tehran, 2016: 517-522. [14] Khomenko M, Veligorskyi O, Husev O, et al.Model predictive control of photovoltaic bidirectional DC-DC converter with coupled inductors[C]//2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), Kiev, 2017: 578-583. [15] 梅杨, 陈丽莎, 黄伟超, 等. 交错并联Buck-Boost变换器模型预测控制方法[J]. 电气传动, 2017, 47(7): 32-36. Mei Yang, Chen Lisha, Huang Weichao, et al.Model predictive control method of staggered parallel Buck-Boost converter[J]. Electric Drive, 2017, 47(7): 32-36. [16] Ebad M, Song B M.Accurate model predictive control of bidirectional DC-DC converters for DC distributed power systems[C]//2012 IEEE Power and Energy Society General Meeting, San Diego, CA, 2012: 1-8. [17] 刘畅. 基于MPC的电气蓄能系统双向直流变换器研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. [18] 安峰, 宋文胜, 杨柯欣. 电力电子变压器的双有源全桥DC-DC变换器模型预测控制及其功率均衡方法[J]. 中国电机工程学报, 2018, 38(13): 3921-3929. An Feng, Song Wensheng,Yang Kexin.Model predi- ctive control and power balancing method of active full-bridge DC-DC converter for power electronic transformers[J]. Proceeding of the CSEE, 2018, 38(13): 3921-3929. [19] 王琪, 孙玉坤, 罗印升. 混合动力电动汽车的复合电源功率分配控制策略[J]. 电工技术学报, 2017, 32(18): 143-151. Wang Qi, Sun Yukun, Luo Yinsheng.Control strategy for power distribution of hybrid electric vehicles[J]. Transactions of China Electrotechnical Society, 2017, 32(18): 143-151. [20] 杨毅, 雷霞, 徐贵阳, 等. 采用PSO-BF算法的微电网多目标电能优化调度[J]. 电力系统保护与控制, 2014, 42(13): 13-20. Yang Yi, Lei Xia, Xu Guiyang, et al.Multi-objective power optimization scheduling of microgrid using PSO-BF algorithm[J]. Power System Protection and Control, 2014, 42(13): 13-20. |
|
|
|