|
|
Infrared Radiation Defect Detection and Imaging Technique under Active Electromagnetic Induction Excitation for Crystalline Silicon Photovoltaic Cells |
Yang Ruizhen1,2, Du Bolun3, He Yunze1,4, Huang Shoudao1, Zhang Hong4 |
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. College of Civil Engineering Changsha University Changsha 410000 China; 3. School of Electrical Engineering and Automation Wuhan University Wuhan 430072 China; 4. Fujian Province Key Laboratory of Nondestructive Testing Fuqing Branch of Fujian Normal University Fuqing 350300 China |
|
|
Abstract Defects can affect the efficiency and service life of crystalline silicon photovoltaic cells and even cause serious damage to grid connected photovoltaic power generation systems. The purpose of this paper is to establish an infrared thermography defect detection method for silicon photovoltaic cells under the active electromagnetic induction. Compared with the surface defect detection method based on machine vision, the proposed method has the advantages of high detection sensitivity, internal defects and multi-type defect detection. Firstly, a digital electromagnetic induction thermal imaging system is established and the thermal imaging sequence of silicon cell is obtained under pulse and locked-in mode. Then, Fourier transform, independent component analysis (ICA), principal component analysis (PCA) and other methods are used to deal with thermography sequences. Finally, the visual inspection of hot spot, crack, broken gate and heavy doping in crystalline silicon photovoltaic cells has realized. The experimental results show that the proposed method can distinguish the background and the defects very well and provide a reliable and rapid means for the research, testing, manufacturing, service and maintenance of crystalline silicon photovoltaic cells.
|
Received: 13 April 2018
Published: 15 February 2019
|
|
|
|
|
[1] 余晓丹, 徐宪东, 陈硕翼, 等. 综合能源系统与能源互联网简述[J]. 电工技术学报, 2016, 31(1): 1-13. Yu Xiaodan, Xu Xiandong, Chen Shuoyi, et al.A brief review to integrated energy system and energy internet[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 1-13. [2] 林玉涵. 基于红外热成像的电力廊道温度的模糊预测技术[J]. 电气技术, 2017,18(8): 65-68. Lin Yuhan.Fuzzy prediction of temperature for an electric power gallery based on an infrared thermal imaging technology[J]. Electrical Engineering, 2017, 18(8): 65-68. [3] 熊军华, 贠超, 王亭岭. 基于多源信息融合的热缺陷监测系统研究[J]. 电力系统保护与控制, 2013, 41(5): 146-150. Xiong Junhua, Yun Chao, Wang Tingling, et al.Research on monitoring system of thermal defects based on multi-source information fusion[J]. Power System Protection and Control, 2013, 41(5): 146-150. [4] 黄新波, 张杰, 田毅, 等. 风电母线槽热故障状态在线监测系统[J]. 电力系统保护与控制, 2017, 45(24): 130-137. Huang Xinbo, Zhang Jie, Tian Yi, et al.On-line monitoring system for wind power busbar trunk heat fault status[J]. Power System Protection and Control, 2017, 45(24): 130-137. [5] 程泽, 巩力, 刘艳莉, 等. 光学损失故障对单晶硅光伏电池参数的影响[J]. 电工技术学报, 2016, 31(17): 217-223. Cheng Ze, Gong Li, Liu Yanli, et al.The influence of optical losses on monocrystalline silicon solar cells parameters[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 217-223. [6] 刘辉海, 赵星宇, 赵洪山, 等. 基于深度自编码网络模型的风电机组齿轮箱故障检测[J]. 电工技术学报, 2017, 32(17): 156-163. Liu Huihai, Zhao Xingyu, Zhao Hongshan, et al.Fault detection of wind turbine gearbox based on deep autoencoder network[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 156-163. [7] 贾科, 顾晨杰, 毕天姝, 等. 大型光伏电站汇集系统的故障特性及其线路保护[J]. 电工技术学报, 2017, 32(9): 189-198. Jia Ke, Gu Chenjie, Bi Tianshu, et al.Fault characteristics and line protection within the collection system of a large-scale photovoltaic power plant[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 189-198. [8] 徐洪伟, 李伟, 叶海明, 等. 基于信息流监测与解析的遥控缺陷诊断技术应用[J]. 电力系统保护与控制, 2017, 45(23): 136-142. Xu Hongwei, Li Wei, Ye Haiming, et al.Application of remote control defect diagnosis technology based on information flow monitoring and analysis[J]. Power System Protection and Control, 2017, 45(23): 136-142. [9] 钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测[J]. 仪器仪表学报, 2017, 38(7): 1570-1578. Qian Xiaoliang, Zhang Heqing, Zhang Huanlong, et al.Solar cell surface defect detection based on visual saliency[J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1570-1578. [10] Du Bolun, Yang Ruizhen, He Yunze, et al.Nondestructive inspection, testing and evaluation for Si-based, thin film and multi-junction solar cells: an overview[J]. Renewable & Sustainable Energy Reviews, 2017, 78: 1117-1151. [11] Frühauf F, Breitenstein O.DLIT-versus ILIT-based efficiency imaging of solar cells[J]. Solar Energy Material Solar Cells, 2017, 169: 195-202. [12] 陈文志, 张凤燕, 张然, 等. 基于电致发光成像的太阳能电池缺陷检测[J]. 发光学报, 2013, 34(8): 1028-1034. Chen wenzhi, Zhang Fengyan, Zhang Ran, et al. Defect detection of solar cells based on electro- luminescence imaging[J]. Journal of Luminescence, 2013, 34(8): 1028-1034. [13] Du Bolun, Yang Ruizhen, He Yunze, et al.Through coating imaging and nondestructive visualization evaluation of early marine corrosion using electro- magnetic induction thermography[J]. Ocean Engineering, 2018, 147: 277-288. [14] Yang Ruizhen, He Yunze.Optically and non- optically excited thermography for composites: a review[J]. Infrared Physics & Technology, 2016, 75: 26-50. [15] 张闯, 蒋盼, 刘素贞, 等. 电磁声发射信号的压缩与重构处理[J]. 电工技术学报, 2017, 32(9): 121-128. Zhang Chuang, Jiang Pan, Liu Suzhen, et al.Compression and reconstruction processing of the electromagnetically induced acoustic emission signal[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 121-128. [16] He Yunze, Yang Ruizhen, Zhang Hong, et al.Volume or inside heating thermography using electromagnetic excitation for advanced composite materials[J]. International Journal of Thermal Sciences. 2017, 111: 41-49. |
|
|
|