|
|
Analysis ofDynamic Permeability and Energy Loss of Ring-Shaped Fe-GaAlloy |
Weng Ling1, 2, Li Weina1, 2, Cao Xiaoning1, 2, Liang Shuzhi1, 2, Wang Bowen1, 2 |
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment Hebei University of Technology Tianjin 300130 China; 2. Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability of Hebei Province Hebei University of Technology Tianjin 300130 China |
|
|
Abstract The dynamic permeability and energy loss are the basis for the design and application of Fe-Ga alloy device. It is necessary to analyze the dynamic permeability and energy loss before studying the high frequency Fe-Ga alloysensor.In this paper, the dynamic permeability and loss model of ring-shaped Fe-Ga alloy is proposed, elastic permeability curve, viscous permeability curve and loss factor are measured using the AMH-1M-S dynamic magnetic propertytesting systemunder the different magnetic field frequency.Impedance and inductance values of ring-shaped Fe-Ga alloy are measured using the impedance analyzer.The elastic permeability and viscous permeability of the ring-shaped Fe-Ga alloy at different frequencies are calculated. The changes of the elastic permeability and the viscous permeability with the magnetic field frequency are analyzed.The results show that with the magnetic field frequency increasing, the elastic permeability firstly falls and then rises and viscous permeability constantly rises, the model calculation results are consistent with the experimental results.With the increasing of the magnetic field frequency, the loss factor increases first, then decreases and finally tends to be stable. The electromagnetic loss and media energy storage are both increasing withincreasing frequency.
|
Received: 18 January 2018
Published: 31 January 2019
|
|
|
|
|
[1] 翁玲, 罗柠, 张露予,等. Fe-Ga合金磁特性测试装置的设计与实验[J]. 电工技术学报, 2015, 30(2):237-241. Weng Ling, LuoNing, ZhangLuyu,et al. Design and experiment of a testing device for Fe-Gamagnetic properties[J]. Transactions of China Electrotechnical Society, 2015, 30(2):237-241. [2] 黄文美, 薛胤龙, 王莉,等. 考虑动态损耗的超磁致伸缩换能器的多场耦合模型[J]. 电工技术学报, 2016, 31(7):173-178. HuangWenmei, XueYinlong, Wang Li,et al. Multi-field coupling model considering dynamic losses forgiant magnetostrictivetransducers[J].Transactions of China Electrotechnical Society, 2016, 31(7):173-178. [3] 曾建斌, 白保东, 曾庚鑫,等. 考虑压力变化的超磁致伸缩超声换能器动态模型[J]. 电工技术学报, 2012, 27(10):215-219. Zeng Jianbin, BaiBaodong, Zeng Gengxin,et al. Dynamic models of giant magnetostrictiveultrasonic transducertaking account into variable pressure[J]. Transactions of China Electrotechnical Society,2012, 27(10):215-219. [4] 卢诗华, 于歆杰, 楼国锋. 磁电层合大电流传感器的改进和性能分析[J]. 电工技术学报, 2017, 32(19):90-99. Lu Shihua, Yu Xinjie, Lou Guofeng.Modification and performance analysis on a magnetoelectric laminate based high-current sensor[J].Transactions of China Electrotechnical Society,2017, 32(19):90-99. [5] 张洪平, 徐立红, 王蕾,等. Fe81Ga19磁致伸缩合金的动态磁导率研究[J]. 金属功能材料, 2010, 17(2):20-22. Zhang Hongping, XuLihong, Wang Lei,et al.Dynamic magnetic permeability of Fe81Ga19magnetostrictivealloy[J]. Metallic Functional Materials,2010, 17(2):20-22. [6] 袁惠群, 孙华刚. 超磁致伸缩材料内部磁场特性及材料参数对其影响分析[J]. 中国电机工程学报, 2008, 28(30):119-124. Yuan Huiqun, Sun Huagang.Inner magnetic field characteristic of giant magnetostrictivematerials and effects ofthe materials parameters on the characteristic[J]. Proceedings of the CSEE,2008, 28(30):119-124. [7] 舒亮, 李传, 吴桂初,等. Fe-Ga合金磁致伸缩力传感器磁化模型建立与特性分析[J]. 农业机械学报, 2015, 46(5):344-349. Shu Liang, Li Chuan, Wu Guichu, et al.Magnetization model of Fe-Gamagnetostrictiveforce sensor and its characteristics[J].Transactions of the Chinese Society for Agricultural Machinery,2015, 46(5):344-349. [8] Scheidler J J, Asnani V M, Dapino M J.Frequency-dependent, dynamic sensing properties of polycrystalline Galfenol (Fe81.6Ga18.4)[J]. Journal of Applied Physics, 2016, 119(24):043001. [9] Zhang Baoshan, ZheYuan, Hu Zhao,et al. Hysteretic behavior of the dynamic permeability in FeCoBthin films[J]. IEEE Transactions on Magnetics, 2016, 52(2):1-4. [10] Blasi S D,Queffelec P, Dubourg S, et al.Driven-voltage permeability variation measurements of bilayeredmagnetostrictive/piezoelectric materials &for tunable microwave applications[J]. IEEE Transactions on Magnetics, 2007, 43(6):2651-2653. [11] MengHao, Zhang Tianli, Jiang Chengbao. Frequency dependence of loss behavior in bonded anisotropic giant magnetostrictivematerials[J].IEEE Transactions on Magnetics, 2014, 50(9):1-4. [12] MengHao, Zhang Tianli, Jiang Chengbao. Cut-off frequency of magnetostrictive materials based on permeability spectra[J]. Journal of Magnetism & Magnetic Materials, 2012, 324(12):1933-1937. [13] 李立毅, 严柏平, 张成明. 驱动频率对超磁致伸缩致动器的损耗和温升特性的影响[J]. 中国电机工程学报, 2011, 31(18):124-129. Li Liyi, Yan Baiping, Zhang Chengming.Influence of frequency on characteristic of loss and temperature in giant magnetostrictiveactuator[J].Proceedings of the CSEE, 2011, 31(18):124-129. [14] Weng Ling, Li Weina, Sun Ying,et al.High frequency characterization of Galfenol minor flux density loops[J]. Aip Advances, 2017, 7(5):1-5. [15] Grossinger R, Mehboob N, Suess D, et al.An eddy-current model describing the frequency dependence of the coercivity of polycrystalline Galfenol[J]. IEEE Transactions on Magnetics, 2012, 48(11):3076-3079. [16] 翁玲, 曹晓宁, 胡秀玉,等. 双线圈铁镓合金换能器的输出特性[J]. 电工技术学报, 2018, 33(19): 4476-4485. Weng Ling, CaoXiaoning, HuXiuyu,et al. Output characteristics of double coil Fe-Gaalloy transducer[J].Transactions of China ElectrotechnicalSociety,2018, 33(19): 4476-4485. [17] 廖绍彬. 铁磁学[M].北京: 北京科学出版社, 1988. [18] LiJiheng, GaoXuexu, Zhu Jie, et al. Wiedemann effect of Fe-Ga based magnetostrictivewires[J]. Chinese Physics B, 2012, 21(8):476-481. |
|
|
|