|
|
Real-Time Dispatch Model for Power System with Advanced Adiabatic Compressed Air Energy Storage |
Li Yaowang1, Miao Shihong1, Yin Binxin1, Luo Xing1,2, Wang Jihong1,2 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Hubei Electric Power Security and High Efficiency Key Laboratory School of Electrical and Electronic Engineering Huazhong University of Science and Technology Wuhan 430074 China; 2. School of Engineering Warwick University Coventry CV4 8UW UK |
|
|
Abstract Advanced adiabatic compressed air energy storage (AA-CAES) has the merits of large-scale, low-costs, no fossil fuel, and high efficiency, etc. It is one of the mainstream development trends of the compressed air energy storage (CAES) technology. This paper took the AA-CAES as an important scheduling resource, to participate in power system real-time dispatch together with thermal power generators and a wind power plant. Firstly, based on the thermodynamic characteristics of the AA-CAES plant, the operation constraints of AA-CAES, which can reflect the AA-CAES operation characteristics under off-design conditions, were established. After that, the automatic generation control (AGC) constraints of the AA-CAES plant were established considering the power regulation uncertainty in the AGC stage. As a result, the real-time dispatch model for the power system with AA-CAES was established. In the model, the system AGC capacity demand, the AGC regulation rate demand and the AGC regulation task demand were considered. Finally, the simulation test was applied on the modified IEEE 30-bus system, which verified the dispatch model.
|
Received: 25 December 2017
Published: 29 January 2019
|
|
|
|
|
[1] 胡娟, 杨水丽, 侯朝勇, 等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术, 2015, 39(4): 879-885. Hu Juan, Yang Shuili, Hou Zhaoyong, et al.Appli- cation states and inspirations of grid-scale energy storage techniques[J]. Power System Technology, 2015, 39(4): 879-885. [2] 许汉平, 李姚旺, 苗世洪, 等. 考虑可再生能源消纳效益的电力系统“源-荷-储”协调互动优化调度策略[J]. 电力系统保护与控制, 2017, 45(17): 18-25. Xu Hanping, Li Yaowang, Miao Shihong, et al.Optimization dispatch strategy considering renewable energy consumptive benefits based on “source-load- energy storage” coordination in power system[J]. Power System Protection and Control, 2017, 45(17): 18-25. [3] Chen Laijun, Zheng Tianwen, Mei Shengwei, et al.Review and prospect of compressed air energy storage system[J]. Journal of Modern Power Systems & Clean Energy, 2016, 4(4): 529-541. [4] Jakiel C, Zunft S, Nowi A.Adiabatic compressed air energy storage plants for efficient peak load power supply from wind energy: the European project AA-CAES[J]. International Journal of Energy Technology & Policy, 2007, 5(3): 296-306. [5] Luo Xing, Wang Jihong, Krupke C, et al.Modelling study, efficiency analysis and optimisation of large- scale adiabatic compressed air energy storage systems with low-temperature thermal storage[J]. Applied Energy, 2016, 162: 589-600. [6] 严毅, 张承慧, 李珂, 等. 含压缩空气的微网复合储能系统主动控制策略[J]. 电工技术学报, 2017, 32(20): 231-240. Yan Yi, Zhang Chenhui, Li Ke, et al.An active control strategy for composited energy storage with compressed air energy storage in micro-grid[J]. Transactions of China Electrotechnical Society, 2017, 32(20): 231-240. [7] Wang Jidai, Lu Kunpeng, Ma Lan, et al.Overview of compressed air energy storage and technology deve- lopment[J]. Energies, 2017, 991(10): 1-22. [8] Daneshi H, Srivastava A K.Security-constrained unit commitment with wind generation and compressed air energy storage[J]. IET Generation Transmission & Distribution, 2012, 6(2): 167-175. [9] Abbaspour M, Satkin M, Mohammadi-Ivatloo B, et al.Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)[J]. Renewable Energy, 2013, 51(51): 53-59. [10] Ghalelou A, Fakhri A, Nojavan S, et al.A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism[J]. Energy Conversion & Management, 2016, 120: 388-396. [11] Shafiee S, Zareipour H, Knight A.Considering thermodynamic characteristics of a CAES facility in self-scheduling in energy and reserve markets[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3476-3485. [12] Easan Drury, Paul Denholm, Ramteen Sioshansi.The value of compressed air energy storage in energy and reserve markets[J]. Energy, 2011, 36(8): 4959-4973. [13] Li Yaowang, Miao Shihong, Luo Xing, et al.Opti- mization model for the power system scheduling with wind generation and compressed air energy storage combination[C]//IEEE International Conference on Automation and Computing, Colchester, UK, 2016: 300-305. [14] Li Rui, Chen Laijun, Yuan Tiejiang, et al.Optimal dispatch of zero-carbon-emission micro energy internet integrated with non-supplementary fired compressed air energy storage system[J]. Journal of Modern Power Systems & Clean Energy, 2016, 4(4): 566-580. [15] 于丹文, 杨明, 韩学山, 等. 计及风电概率分布特征的鲁棒实时调度方法[J]. 中国电机工程学报, 2017, 37(3): 727-737. Yu Danwen, Yang Ming, Han Xueshan, et al.Robust real-time dispatch considering probabilistic distribution of wind generation[J]. Proceedings of the CSEE, 2017, 37(3): 727-737. [16] Beaudin M, Zareipour H, Schellenberglabe A, et al.Energy storage for mitigating the variability of renewable electricity sources: an updated review[J]. Energy for Sustainable Development, 2010, 14(4): 302-314. [17] 张远. 风电与先进绝热压缩空气储能技术的系统集成与仿真研究[D]. 北京: 中国科学院研究生院(工程热物理研究所), 2014. [18] 薛小代, 陈晓弢, 梅生伟, 等. 采用熔融盐蓄热的非补燃压缩空气储能发电系统性能[J]. 电工技术学报, 2016, 31(14): 11-20. Xue Xiaodai, Chen Xiaotao, Mei Shengwei, et al.Performance of non-supplementary fired compressed air energy storage with molten salt heat storage[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 11-20. [19] Crotogino F, Mohmeyer K U, Scharf R.Huntorf CAES: More than 20 years of successful operation[C]// Proceedings of Solution Mining Research Institude Meeting, Orlando, USA, 2001: 1-6. [20] 陈大宇, 张粒子, 马历. 储能参与的AGC市场出清优化建模新方法[J]. 电力系统自动化, 2014, 38(13): 79-84. Chen Dayu, Zhang Lizi, Ma Li.A new optimization method for AGC market clearing considering energy storage systems[J]. Automation of Electric Power Systems, 2014, 38(13): 79-84. [21] 段翩, 朱建全, 刘明波. 基于双层模糊机会约束规划的虚拟电厂优化调度[J]. 电工技术学报, 2016, 31(9): 58-67. Duan Pian, Zhu Jianquan, Liu Mingbo.Optimal dispatch of virtual power plant based on bi-level fuzzy chance constrained programming[J]. Transactions of China Electrotechnical Society, 2016, 31(9): 58-67. [22] 罗超, 杨军, 孙元章, 等. 考虑备用容量优化分配的含风电电力系统动态经济调度[J]. 中国电机工程学报, 2014, 34(34): 6109-6118. Luo Chao, Yang Jun, Sun Yuanzhang, et al.Dynamic economic dispatch of wind integrated power system considering optimal scheduling of reserve capacity[J]. Proceedings of the CESS, 2014, 34(34): 6109-6118. [23] Li Zhigang, Wu Wenchuan, Zhang Boming, et al.Adjustable robust real-time power dispatch with large- scale wind power integration[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 357-368. [24] 翟鹤峰, 杨明, 王栋, 等. 计及注入转移分布因子估计误差的鲁棒实时调度[J]. 电工技术学报, 2017, 32(14): 217-228. Zhai Hefeng, Yang Ming, Wang Dong, et al.Robust real-time dispatch considering the injection shift factor estimation errors[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 217-228. [25] 宋卓然, 赵琳, 张子信, 等. 热电联产与风电机组联合运行滚动优化调度模型[J]. 电力系统保护与控制, 2016, 44(24): 110-116. Song Zhuoran, Zhao Lin, Zhang Zixin, et al.Rolling optimal model for multiple heating source and wind turbine unit[J]. Power System Protection and Control, 2016, 44(24): 110-116. [26] 赵冬梅, 殷加玞. 考虑源荷双侧不确定性的模糊随机机会约束优先目标规划调度模型[J]. 电工技术学报, 2018, 33(5): 1076-1085. Zhao Dongmei, Yin Jiafu.Fuzzy random chance constrained preemptive goal programming scheduling model considering source-side and load-side uncer- tainty[J]. Transactions of China Electrotechnical Society, 2018, 33(5): 1076-1085. |
|
|
|