|
|
Measurement Technology of High Frequency Interference Current of the Electric Energy Conversion Device in the Electromagnetic Launch System |
Li Jianxuan1,2, Zhao Zhihua1, Zhang Xiangming1, Zhang Lei1 |
1. National Key Laboratory of Science and Technology on Vessel Integrated Power System Naval University of Engineering Wuhan 430033 China; 2. Naval Research Academy Beijing 100161 China |
|
|
Abstract High frequency interference current is a key evaluating indicator for the characteristic of electromagnetic interference of power electronics conversion devices. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion devices in the electromagnetic launch system reaches up to 10kA. Current probes conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements of high current system due to the magnetic saturation problem. Meanwhile, since the conventional high current sensors adopt the active amplifier, the high-frequency output noise is large, and the sensitivity is low, which is not suitable for the high frequency interference current measurement in high current power devices. In this paper, a flexible current probe based on Rogowski coil and passive matching resistance is proposed. It can achieve accurate measurement of high current interference current in high current system, and also has low output noise level. Since the proposed probe has flexible structure, both differential mode and common mode current detection can be easily carried out.
|
Received: 08 April 2018
Published: 29 December 2018
|
|
|
|
|
[1] Olli Väänänen.Do-it-yourself current probe characterization for EMC trouble shooting[C]//Inter- national Symposium on Fundamentals of Electrical Engineering, Bucharest, Romania, 2014: 1-4. [2] 戴魏, 郑玉平, 白亮亮, 等. 保护用电流互感器传变特性分析[J]. 电力系统保护与控制, 2017, 45(19): 46-54.Dai Wei, Zheng Yuping, Bai Liangliang, et al. Analysis of protective current transformer transient response[J]. Power System Protection and Control, 2017, 45(19): 46-54. [3] 王晶, 曹文斌, 杨增力, 等. 多种电流互感器暂态饱和特性及其复杂工况下动模试验研究[J]. 电力系统保护与控制, 2017, 45(20): 58-65.Wang Jing, Cao Wenbin, Yang Zengli, et al. Study on multiple types of CTs transient saturation and its dynamic simulation tests in complex operating conditions[J]. Power System Protection and Control, 2017, 45(20): 58-65. [4] 刘刚, 熊小伏, 廖瑞金, 等. 泄漏电流对电流互感器误差特性的影响及分析[J]. 电工技术学报, 2018, 33(3): 697-704.Liu Gang, Xiong Xiaofu, Liao Ruijin, et al. Effect and analysis of leakage current on error characteri- stics of current transformer[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 697-704. [5] 董新涛, 康小宁, 步梦琼, 等. 基于动态虚拟磁通分析的CT饱和识别方案研究[J]. 电力系统保护与控制, 2017, 45(7): 126-130.Dong Xintao, Kang Xiaoning, Bu Mengqiong, et al. Research on the method to identify CT saturation based on dynamic virtual magnetic flux[J]. Power System Protection and Control, 2017, 45(7): 126-130. [6] 周雪青, 郝晓光, 张岩坡, 等. 基于分段拟合算法的电流互感器误差研究[J]. 电力系统保护与控制, 2017, 45(3): 139-143.Zhou Xueqing, Hao Xiaoguang, Zhang Yanpo, et al. Research on the error of current transformer based on subsection fitting algorithm[J]. Power System Protection and Control, 2017, 45(3): 139-143. [7] 马伟明, 肖飞, 聂世雄. 电磁发射系统中电力电子技术的应用与发展[J]. 电工技术学报. 2016, 31(19): 1-10.Ma Weiming, Xiao Fei, Nie Shixiong. Applications and development of power electronics in electro- magnetic launch system[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 1-10. [8] 卢诗华, 于歆杰, 楼国锋. 一种基于磁电层合材料的新结构大电流传感器[J]. 电工技术学报, 2016, 31(23): 70-76.Lu Shihua, Yu Xinjie, Lou Guofeng. A new magnetoelectric laminate based high-current sensor[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 70-76. [9] 卢诗华, 于歆杰, 楼国锋. 磁电层合大电流传感器的改进和性能分析[J]. 电工技术学报, 2017, 32(19): 90-99.Lu Shihua, Yu Xinjie, Lou Guofeng. Modification and performance analysis on a magnetoelectric laminate based high-current sensor[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 90-99. [10] 宋璇坤, 闫培丽, 肖智宏, 等. 全光纤电流互感器技术应用评述[J]. 电力系统保护与控制, 2016, 44(8): 149-154.Song Xuankun, Yan Peili, Xiao Zhihong, et al. Comment on the technology and application of fiber optic current transformer (FOCT)[J]. Power System Protection and Control, 2016, 44(8): 149-154. [11] 樊占峰, 白申义, 杨智德, 等. 光学电流互感器关键技术研究[J]. 电力系统保护与控制, 2018, 46(3): 67-74.Fan Zhanfeng, Bai Shenyi, Yang Zhide, et al. Research on key technology of optical current transformer[J]. Power System Protection and Control, 2018, 46(3): 67-74. [12] LEM LT10000-S DataSheet. [13] PEM CWT60B-700 DataSheet. [14] 张向明, 赵治华, 孟进, 等. 大功率电磁装置短时变频磁场辐射测试系统[J]. 电工技术学报, 2010, 25(9): 8-13.Zhang Xiangming, Zhao Zhihua, Meng Jin, et al. Measurement system for short-time and frequency- conversion magnetic field radiated by large-power electromagnetic equipment[J]. Transactions of China Electrotechnical Society, 2010, 25(9): 8-13. [15] 张向明, 李建轩, 赵治华, 等. 基于时-频变换的电磁干扰频谱测试方法[J]. 电工技术学报, 2015, 30(增刊2): 16-20.Zhang Xiangming, Li Jianxuan, Zhao Zhihua, et al. Electromagnetic interference spectrum measurement method base on time-frequency domain trans- formation[J]. Transactions of China Electrotechnical Society, 2015, 30(S2): 16-20. [16] 贾晋, 赖志达, 王瑞妙, 等. 共模电流扫描法在汽车电子部件电磁辐射预测中的研究与应用[J]. 电工技术学报, 2018, 33(8): 1674-1684.Jia Jin, Lai Zhida, Wang Ruimiao, et al. Research and application on common-mode current scan methods to predict radiated emissions of automotive com- ponents[J]. Transactions of China Electrotechnical Society, 2018, 33(8): 1674-1684. |
|
|
|