|
|
Crosslinked and Electrical Characteristics for Cable Insulating Material of New UV XLPE |
Fu Yuwei1, Wang Xuan2, Wu Qianghua3, Zhao Hong2 |
1. School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 China; 2. Key Laboratory of Engineering Dielectrics and Its Application Harbin University of Science and Technology Harbin 150080 China; 3. Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China |
|
|
Abstract In order to study the crosslinked and electrical characteristics of insulation material for new ultraviolet crosslinking polyethylene (UV XLPE) cable, the loss rates of thermal migration and crosslinked efficiencies for macromolecular photoinitiating system and micromolecular photoinitiating system were tested. Then the electrical characteristics of crosslinking samples that initiated by two kinds of photoinitiating systems were measured at room temperature, respectively. In addition, a radial distribution model of UV XLPE crosslinked degree for cable core was deduced, and a mathematical analysis was made for the model. The analysis indicate that the loss rates of thermal migration for macromolecule photoinitiator and crosslinker are improved significantly than the micromolecule photoinitiator as well as crosslinker, and the crosslinking efficiencies of them are improved to some extent. Besides, the electrical performances of new UV XLPE were improved somewhat, and the breakdown performances can reaches a high point at the crosslinked degree is around 75%, the breakdown strength showed a trend of decline when it higher than the value. The error of the mean value for radial distribution mode between the nonlinear fitting method and actual measured is only five thousandths, so it has more accurate applicability on the experimental research of new UV XLPE.
|
Received: 12 December 2017
Published: 17 December 2018
|
|
|
|
|
[1] Judendorfer T, Pack S, Muhr M.Aspects of high voltage cable sections in modern overhead line transmission systems[C]//International Conference on High Voltage Engineering and Application, Chongqing, 2008: 71-75. [2] Zuo Mingjiu, Tian Feng, Qiao Xiaorui.Research of parallel placed submarine cable route detection method[C]//International Conference on Image Analysis and Signal Processing, Hubei, 2011: 595-599. [3] Teyssedre G, Laurent C.Advances in high-field insulating polymeric materials over the past 50 years[J]. IEEE Electrical Insulation Magazine, 2013, 29(5): 26-36. [4] Niu Yanhua, Liang Wenbin, Zhang Yinling, et al.Crosslinking kinetics of polyethylene with small amount of peroxide and its influence on the subsequent crystallization behaviors[J]. Chinese Journal of Polymer Science, 2016, 34(9): 1117-1128. [5] Deng Jianping, Wang Lifu, Liu Lianying, et al.Developments and new applications of UV-induced surface graft polymerizations[J]. Progress in Polymer Science, 2009, 34(2): 156-193. [6] 何伟, 唐安斌, 罗春明, 等. 线性低密度聚乙烯光交联反应及其性能研究[J]. 绝缘材料, 2011, 44(1): 66-68. He Wei, Tang Anbin, Luo Chunming, et al.Photocrosslinking of linear low density polyethylene[J]. Insulating Material, 2011, 44(1): 66-68. [7] Qu Baojun, Bao Wenbo, Wu Qianghua, et al.Recent devolpments on photoinitiated crosslinking of polyethylene and its applications for manufacturing insulated wire and cable[C]//9th International Conference on the Properties and Applications of Dielectric Material, Harbin, 2009: 33-36. [8] Oster G, Oster G K, Moroson H.Ultraviolet induced crosslinking andgrafting of solid high polymers[J]. Journal of Polymer Science, 1959, 34(127): 671-684. [9] Chen Yonglie, Rånby B.Photocrosslinking of polyethylene I. Photoinitiators, crosslinking agent, and reaction kinetics[J]. Journal of Polymer Science Part A Polymer Chemistry, 1989, 27(12): 4051-4075. [10] Chen Yonglie, Rånby B.Photocrosslinking of polyethylene II. Properties of Photocrosslinked Polyethylene[J]. Journal of Polymer Science Part A Polymer Chemistry, 1989, 27(12): 4077-4086. [11] Yan Qing, Xu Wenying, Rånby B.Photoinitiated crosslinking of low density polyethylene I. Reaction and kinetics[J]. Polymer Engineering and Science, 1991, 31(22): 1561-1566. [12] Qu Baojun, Rånby B.Photocross-linking of low-density polyethylene I. Kinetics and reaction parameters[J]. Journal of Applied Polymer Science, 1993, 48(4): 701-709. [13] Fu Yuwei, Wang Xuan, Zhao Wei, et al.Effects of new photoinitiator on dielectric properties of UV irradiation XLPE[C]//11th International Conference on the Properties and Applications of Dielectric Material, Sydney, 2015: 536-539. [14] Tanaka T.Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2005, 12(5): 914-928. [15] 曹晓珑, 徐曼, 刘春涛. 纳米添加对聚合物击穿性能的影响[J]. 电工技术学报, 2006, 21(2): 8-12. Cao Xiaolong, Xu Man, Liu Chuntao.Influence on breakdown property of polymer with nano-additive[J]. Transactions of China Electrotechnical Society, 2006, 21(2): 8-12. [16] 闫志雨, 韩宝忠, 赵洪, 等. 炭黑/交联聚乙烯纳米复合材料的空间电荷和电导特性[J]. 高电压技术, 2014, 40(9): 2661-2667. Yan Zhiyu, Han Baozhong, Zhao Hong, et al.Space charge and electrically conductive characteristics of CB/XLPE nanocomposites[J]. High Voltage Engineering, 2014, 40(9): 2661-2667. [17] 陈熙谋. 大学物理通用教程光学[M]. 北京: 北京大学出版社, 2011. [18] 瞿保钧, 徐云华, 瞿欣. 低密度聚乙烯光交联点的结构及其形成机理[J]. 高等化学学报, 1997, 18(2): 317-322. Qu Baojun, Xu Yunhua, Qu Xin.Photoinitiated crosslinking structures and mechanisms of low density polyethylene[J]. Chemical Journal of Chinese Universities, 1997, 18(2): 317-322. [19] 王正熙. 高分子材料剖析实用手册[M]. 北京: 化学工业出版社, 2016. [20] 龚方红, 俞强, 李锦春, 等. 交联低密度聚乙烯交联程度表征方法的研究[J]. 高分子学报, 1999, 1(5): 616-619. Gong Fanghong, Yu Qiang, Li Jinchun, et al.Characterization of crosslinking degree of LDPE vulcanizates[J]. Acta Polymerica Sinica, 1999, 1(5): 616-619. [21] Tanaka T, Bulinski A, Castellon J, et al.Dielectric properties of XLPE/SiO2 nanocomposites based on CIGRE WG D1.24 cooperative test results[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2011, 18(5): 1482-1517. [22] 尹毅, 陈炯, 李喆, 等. 纳米SiOx/聚乙烯复合材料强场电导特性的研究[J]. 电工技术学报, 2006, 21(2): 22-26. Yin Yi, Chen Jiong, Li Zhe, et al.High field conduction of the composites of low-density polyethylene/nano-SiOx[J]. Transactions of China Electrotechnical Society, 2006, 21(2): 22-26. [23] 田付强, 杨春, 何丽娟, 等. 聚合物/无机纳米复合电介质介电性能及其机理最新研究进展[J]. 电工技术学报, 2011, 26(3): 1-12. Tian Fuqiang, Yang Chun, He Lijuan, et al.Recent research advancement in dielectric properties and the corresponding mechanism of polymer/inorganic nanocomposite[J]. Transactions of China Electrotechnical Society, 2011, 26(3): 1-12. [24] 王威望, 李盛涛, 刘文凤. 聚合物纳米复合电介质的击穿性能[J]. 电工技术学报, 2017, 32(16): 25-36. Wang Weiwang, Li Shengtao, Liu Wenfeng.Dielectric breakdown of polymer nanocomposites[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 25-36. [25] Chauvet C, Laurent C.Weibull statistics in short-term dielectric breakdown of thin polyethylene films[J]. IEEE Transactions on Electrical Insulation, 1993, 28(1): 18-29. [26] 廖瑞金, 柳海滨, 柏舸, 等. 纳米SiO2/芳纶绝缘纸复合材料的空间电荷特性和介电性能[J]. 电工技术学报, 2016, 31(12): 40-48. Liao Ruijin, Liu Haibin, Bai Ge, et al.Space charge characteristics and dielectric properties of nano-SiO2/aramid paper composite[J]. Transactions of China Electrotechnical Society, 2016, 31(12): 40-48. [27] 毛爱民. 交联聚乙烯电缆绝缘交联度径向非均匀性探讨[J]. 电线电缆, 2009, 2(2): 33-35. Mao Aimin.Investigation of the radial inhom ogeneity of the crosslinking degree in XLPE cable insulation[J]. Electric Wire and Cable, 2009, 2(2): 33-35. [28] Ophthalmologica D.The applicability of Lambert Beer's law[J]. Documenta Ophthalmologica Advances in Ophthalmology, 1974, 38(2): 279-282. [29] 吴勃英. 数值分析原理[M]. 北京: 科学出版社, 2003. |
|
|
|