|
|
Fast Voltage Recovery Control Strategy for Supercapacitor Interfacing Bidirectional DC-DC Converter |
Liu Sucheng1,2, Gan Yangyang1,2, Liu Xiaodong1,2, Liu Yanfei3 |
1. School of Electrical and Information Engineering Anhui University of Technology Maanshan 243032 China; 2. Key Lab of Power Electronics & Motion Control Anhui University of Technology Maanshan 243032 China; 3. Department of Electrical and Computer Engineering Queen’s University Kingston K7L3N6 Canada; |
|
|
Abstract Control of bus voltage stability in DC microgrid is a key issue, which is particularly important when the DC bus is disturbed at different time scales. In order to solve the problem of instantaneous power imbalance of the DC bus, the idea of capacitor charge balance control (CBC) was introduced to supercapacitor interfacing bidirectional DC-DC converter to realize fast recovery of bus voltage with high power density of the supercapacitor. Based on existing CBC for unidirectional current DC-DC converter, the idea of indirectly predicting the change of capacitor current was extended and optimized. Moreover, the general substitution method of node current was obtained and the corresponding control law was also derived to achieve the objective of fast control of bidirectional current. The detailed implementation of the hybrid control strategy based on CBC was given, and the average current mode control combined with hysteresis current limiter were used to realize stable control of the interfacing converter at both sides. Finally, simulation and prototype experiments verify the effectiveness of the proposed hybrid control strategy.
|
Received: 04 January 2018
Published: 17 December 2018
|
|
|
|
|
[1] 王毅, 张丽荣, 李和明, 等. 风电直流微网的电压分层协调控制[J]. 中国电机工程学报, 2013, 33(4): 16-24. Wang Yi, Zhang Lirong, Li Heming, et al.Hierarchical coordinated control of wind turbine-based DC microgrid[J]. Proceedings of the CSEE, 2013, 33(4): 16-24. [2] Diaz N L, Dragičević T, Vasquez J C, et al.Intelligent distributed generation and storage units for DC microgrids- a new concept on cooperative control without communications beyond droop control[J]. IEEE Transactions on Smart Grid, 2014, 5(5): 2476-2485. [3] 秦红霞, 王成山, 刘树, 等. 智能微网与柔性配网相关技术探讨[J]. 电力系统保护与控制, 2016, 44(20): 17-23. Qin Hongxia, Wang Chengshan, Liu Shu, et al.Discussion on the technology of intelligent micro-grid and flexible distribution system[J]. Power System Protection and Control, 2016, 44(20): 17-23. [4] 贺悝, 李勇, 曹一家, 等. 考虑分布式储能参与的直流配电网电压柔性控制策略[J]. 电工技术学报, 2017, 32(10): 101-110. He Li, Li Yong, Cao Yijia, et al.Flexible voltage control strategy of DC distribution network considering distributed energy storage[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 101-110. [5] Adly M, Kai S.Irradiance-adaptive PV module integrated converter for high efficiency and power quality in standalone and DC microgrid applications[J]. IEEE Transactions on Industrial Electronics, 2017, 65(1): 436-446. [6] 吴卫民, 何远彬, 耿攀, 等. 直流微网研究中的关键技术[J]. 电工技术学报, 2012, 27(1): 98-106. Wu Weimin, He Yuanbin, Geng Pan, et al.Key technologies for DC micro-grids[J]. Transactions of China Electrotechnical Society, 2012, 27(1): 98-106. [7] 张纯江, 董杰, 刘君, 等. 蓄电池与超级电容混合储能系统的控制策略[J]. 电工技术学报, 2014, 29(4): 334-340. Zhang Chunjiang, Dong Jie, Liu Jun, et al.A control strategy for battery-ultracapacitor hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 334-340. [8] Shafiee Q, Dragicevic T, Vasquez J C, et al.Modeling, stability analysis and active stabilization of multiple DC-microgrid clusters[C]//IEEE International Energy Conference, Cavtat, Croatia, 2014: 1284-1290. [9] 杨捷, 金新民, 吴学智, 等. 直流微网中混合储能系统的无互联通信网络功率分配策略[J]. 电工技术学报, 2017, 32(10): 135-144. Yang Jie, Jin Xinmin, Wu Xuezhi, et al.A wireless power sharing control strategy for hybrid energy storage systems in DC microgrids[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 135-144. [10] Somayajula D, Crow M L.An ultracapacitor integrated power conditioner for intermittency smoothing and improving power quality of distribution grid[J]. IEEE Transactions on Sustainable Energy, 2014, 5(4): 1145-1155. [11] 雷志方, 汪飞, 高艳霞, 等. 面向直流微网的双向DC-DC变换器研究现状和应用分析[J]. 电工技术学报, 2016, 31(22): 137-147. Lei Zhifang, Wang Fei, Gao Yanxia, et al.Research status and application analysis of bidirectional DC-DC converters in DC micro-grids[J]. Transactions of China Electrotechnical Society, 2016, 31(22): 137-147. [12] 梅杨, 陈丽莎, 黄伟超, 等. 级联式双向DC-DC变换器的优化控制方法[J]. 电工技术学报, 2017, 32(19): 153-159. Mei Yang, Chen Lisha, Huang Weichao, et al.Optimized control method of cascaded bi-directional DC-DC converters[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 153-159. [13] 胡斯登, 梁梓鹏, 范栋琦, 等. 基于Z源变换器的电动汽车超级电容-电池混合储能系统[J]. 电工技术学报, 2017, 32(8): 247-255. Hu Sideng, Liang Zipeng, Fan Dongqi, et al.Implementation of Z-source converter for ultracapacitor-battery hybrid energy storage system for electric vehicle[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 247-255. [14] 李培强, 段克会, 董彦婷, 等. 含分布式混合储能系统的光伏直流微网能量管理策略[J]. 电力系统保护与控制, 2017, 45(13): 42-48. Li Peiqiang, Duan Kehui, Dong Yanting, et al.Energy management strategy for photovoltaic DC microgrid with distributed hybrid energy storage system[J]. Power System Protection and Control, 2017, 45(13): 42-48. [15] Cao Jian, Emadi A.A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles[J]. IEEE Transactions on Power Electronics, 2012, 27(1): 122-132. [16] 郭瑞, 王磊. 混合储能系统六通道双向DC-DC变换器耦合电感研究[J]. 电工技术学报, 2017, 32(1): 117-128. Guo Rui, Wang Lei.Research on coupled inductors of 6-channel bi-directional DC-DC converters for hybrid energy storage system[J]. Transactions of China Electrotechnical Society, 2017, 32(1): 117-128. [17] Kim S K.Self-tuning adaptive feedback linearizing output voltage control for AC/DC converter[J]. Control Engineering Practice, 2015, 45: 1-11. [18] Serna-Garcés S I, Montoya D G, Ramos-Paja C A. Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems[J]. Energies, 2016, 9(4): 245-272. [19] Corradini L, Babazadeh A, Bjeletić A, et al.Current-limited time-optimal response in digitally controlled DC-DC converters[J]. IEEE Transactions on Power Electronics, 2010, 25(11): 2869-2880. [20] Kapat S, Krein P T.Improved time optimal control of a Buck converter based on capacitor current[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1444-1454. [21] Agarwal A, Deekshitha K, Singh S, et al.Sliding mode control of a bidirectional DC/DC converter with constant power load[C]//IEEE First International Conference on DC Microgrids, Atlanta, USA, 2015: 287-292. [22] Gautam A R, Singh S, Fulwani D.DC bus voltage regulation in the presence of constant power load using sliding mode controlled dc-dc bi-directional converter interfaced storage unit[C]//IEEE First International Conference on DC Microgrids, Atlanta, USA, 2015: 257-262. [23] Barrado J A, Aroudi A E, Valderrama-Blavi H, et al.Analysis of a self-oscillating bidirectional DC-DC converter in battery energy storage applications[J]. IEEE Transactions on Power Delivery, 2012, 27(3): 1292-1300. [24] Amin, Bambang R T, Rohman A S, et al. Energy management of fuel cell/battery/supercapacitor hybrid power sources using model predictive control[J]. IEEE Transactions on Industrial Informatics, 2014, 10(4): 1992-2002. [25] Babazadeh A, Maksimovic D.Hybrid digital adaptive control for fast transient response in synchronous Buck DC-DC converters[J]. IEEE Transactions on Power Electronics, 2009, 24(11): 2625-2638. [26] 洪翠, 林维明, 郭晓君. 一种大变比电路的新型电容电荷平衡控制策略[J]. 电工电能新技术, 2015, 34(6): 27-31. Hong Cui, Lin Weiming, Guo Xiaojun.New control strategy of large ratio step-down converter based on capacitor charge balance[J]. Advanced Technology of Electrical Engineering and Energy, 2015, 34(6): 27-31. [27] Meyer E, Liu Yanfei.Digital charge balance controller with an auxiliary circuit for improved unloading transient performance of Buck converters[J]. IEEE Transactions on Power Electronics, 2013, 28(1): 357-370. [28] Jia Liang, Liu Yanfei.Voltage-based charge balance controller suitable for both digital and analog implementations[J]. IEEE Transactions on Power Electronics, 2013, 28(2): 930-944. [29] Jia Liang, Liu Yanfei.Low cost microcontroller based implementation of robust voltage based capacitor charge balance control algorithm[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2): 869-879. [30] 刘晓东, 葛玲, 方炜, 等. Buck-Boost变换器线性与非线性复合控制[J]. 电机与控制学报, 2014, 18(11): 106-111. Liu Xiaodong, Ge Ling, Fang Wei, et al.Linear and nonlinear composite control strategy of the Buck-Boost converter[J]. Electric Machines and Control, 2014, 18(11): 106-111. [31] Fang Wei, Liu Xiaodong, Liu Yanfei.A new digital control algorithm for dual-transistor forward converter[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2074-2081. [32] 刘晓东, 邱亚杰, 方炜, 等. Boost变换器电容电荷平衡动态最优控制[J]. 电力自动化设备, 2011, 31(5): 63-66. Liu Xiaodong, Qiu Yajie, Fang Wei, et al.Optimal dynamic control based on capacitor charge balance for Boost converter[J]. Electric Power Automation Equipment, 2011, 31(5): 63-66. [33] Thounthong P, Rael S, Davat B.Control strategy of fuel cell and supercapacitors association for a distributed generation system[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3225-3233. |
|
|
|