|
|
Entropy Generation Minimization Analysis of Wind Turbines Based on Multi Field Coupling |
Wen Caifeng1,2,3, Zhang Jianxun1, Peng Hailun1, Wang Jianwen1,2 |
1. College of Energy and Power Engineering Inner Mongolia University of Technology Hohhot 010051 China; 2. Key Laboratory of Wind Energy and Solar Energy Technology Ministry of Education Inner Mongolia University of Technology Hohhot 010051 China; 3. Xinjiang Technical Institute of Physics & Chemistry CAS Urumchi 830011 China |
|
|
Abstract The problem of low productivity and low output stability of permanent magnet wind power system was aimed at in this research. The loss of heat and heat transfer performance was considered, and the wind turbine was regarded as an isolated system. Entropy entropy production model was established. The dynamic process of thermal power generation and diffusion entropy generation was analyzed. The loss, the heat transfer characteristics, the three field coupling mechanism and the entropy production rate distribution law were studied. Finally, the minimum entropy production rate was taking as the target. The optimal operating conditions and the magnetic thermal structure of the unit were determined by adjusting the key factors, such as the incoming wind speed, the yaw angle of the unit, gap structure and air gap length between stator and rotor and so on. The minimum entropy production rate optimization scheme of the wind turbine was proposed.
|
Received: 31 October 2017
Published: 15 October 2018
|
|
|
|
|
[1] Li Weili, Qiu Hongbo, Zhang Xiaochen, et al.Influence of copper plating on electromagnetic and temperature fields in a high-speed permanent-magnet generator[J]. IEEE Transactions on Magnetics, 2012, 48(8): 2247-2253. [2] 黄东洙, 李伟力, 王耀玉, 等. 磁性槽楔对永磁电机转子损耗及温度场影响[J]. 电机与控制学报, 2016, 20(1): 60-67.Huang Dongzhu, Li Weili, Wang Yaoyu, et al. Influence of magnetic slot wedge on rotor losses and temperature field of PMSM[J]. Electric Machines and Control, 2016, 20(1): 60-67. [3] Zhang Xiaochen, Li Weili, Kou Baoquan, et al.Electrothermal combined optimization on notch in air-cooled high-speed permanent-magnet generator[J]. IEEE Transactions on Magnetics, 2015, 51(1): 1-10. [4] 佟文明, 孙静阳, 吴胜男. 全封闭高速永磁电机转子结构对转子散热的影响[J]. 电工技术学报, 2017,32(22): 91-100.Tong Wenming, Sun Jingyang, Wu Shengnan. Effect of rotor structure on rotor dissipation for totally-enclosed high-speed permanent magnet motor[J]. Transactions of China Electrotechnical Society, 2017, 32(22): 91-100. [5] 李伟力, 李金阳, 李丹. 截面转子通风沟对全空冷水轮发电机转子温度场和流体场的影响[J]. 电工技术学报, 2017, 32(增刊2): 42-49.Li Weili, Li Jinyang, Li Dan. Influence of variable section rotor ventilation ducts on temperature and fluid fields of a full air-cooled large hydro-generator rotor[J]. Transactions of China Electrotechnical Society, 2017, 32(S2): 42-49. [6] 佟文明, 孙静阳, 舒圣浪, 等. 不同数值方法在自扇冷永磁同步电机三维热分析中的应用[J]. 电工技术学报, 2017, 32(增刊1): 151-159.Tong Wenming, Sun Jingyang, Shu Shenglang, et al. Application of different numerical methods in 3D thermal analysis for fan-ventilated permanent magnet synchronous machines[J]. Transactions of China Electrotechnical Society, 2017, 32(S1): 151-159 [7] 张琪, 鲁茜睿, 黄苏融, 等. 多领域协同仿真的高密度永磁电机温升计算[J]. 中国电机工程学报, 2014, 34(12): 1874-1881.Zhang Qi, Lu Xirui, Huang Surong, et al. Temperature rise calculations of high density permanent magnet motors based on multi-domain co-simulation[J]. Proceedings of the CSEE, 2014, 34(12): 1874-1881. [8] Lefik M.Design of permanent magnet synchronous motors including thermal aspects[J]. Permanent Magnet Synchronous Motors, 2015, 34(2): 561-572. [9] 夏加宽, 李文瑞, 何新, 等. 各向异性横向磁通永磁直线电机穿片漏磁分析[J]. 电工技术学报, 2015, 30(14): 518-524.Xia Jiakuan, Li Wenrui, He Xin, et al. Analysis of anisotropic permeate leakage flux on transverse flux permanent magnet linear machine[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 518-524. [10] 李立毅, 张江鹏, 赵国平, 等. 考虑极限热负荷下高过载永磁同步电机的研究[J]. 中国电机工程学报, 2016, 36(3): 845-851.Li Liyi, Zhang Jiangpeng, Zhao Guoping, et al. Research on the high overload permanent magnet synchronous motor considering extreme thermal load[J]. Proceedings of the CSEE, 2016, 36(3): 845-851. [11] 朱高嘉, 朱英浩, 朱建国, 等. 永磁电机温度场的改进有限公式迭代算法[J]. 电工技术学报, 2017, 32(16): 136-144.Zhu Gaojia, Zhu Yinghao, Zhu Jianguo, et al. A modified thermal rewind model of permanent magnet motors based on finite formulation method[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 136-144. [12] Zhang Shukuan, Li Weili, Li Jinyang, et al.Research on flow rule and thermal dissipation between the rotor poles of a fully air-cooled hydrogenerator[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3430-3437. [13] Song Xiaowei, Mijatovic N, Zou Shengnan, et al.AC losses and their thermal effect in high-temperature superconducting machines[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [14] Song Xiaowei, Mijatovic N, Zou Shengnan, et al.Thermal analysis of open-circuit steady-state MgB2 superconducting synchronous generator based on multiphysical field coupling[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(4): 1-5. [15] 王晓远, 齐丹丹, 王辉. 定子无磁轭模块化轴向永磁电机磁极表面开槽分析[J]. 电工技术学报, 2017, 32(16): 145-152.Wang Xiaoyuan, Qi Dandan, Wang Hui. Analysis on magnet surface groove of yokeless and segmented armature axial flux motor[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 145-152. [16] 边晓燕, 田春笋, 符杨. 提升直驱型永磁风电机组故障穿越能力的改进控制策略研究[J]. 电力系统保护与控制, 2016, 44(9): 69-74.Bian Xiaoyan, Tian Chunsun, Fu Yang. A coordinated control strategy for fault ride-though capacity of direct-drive permanent magnet wind power generating units[J]. Power System Protection and Control, 2016, 44(9): 69-74. [17] 王丹, 刘崇茹, 李庚银. 永磁直驱风电机组故障穿越优化控制策略研究[J]. 电力系统保护与控制, 2015, 43(24): 83-89.Wang Dan, Liu Chongru, Li Gengyin. Research on the fault ride-through optimal control strategy of PMSG-based wind turbine[J]. Power System Protection and Control, 2015, 43(24): 83-89. [18] 刘丹, 李强, 冯承超. 小型直驱式永磁同步风力发电机快速最大功率追踪仿真研究[J]. 电力系统保护与控制, 2016, 44(5): 141-146.Liu Dan, Li Qiang, Feng Chengchao. A simulation study of small direct drive type permanent magnet synchronous generator fast maximum power tracking [J]. Power System Protection and Control, 2016, 44(5): 141-146. |
|
|
|