|
|
Study on Pyrolysis Characteristics of Fiber Reinforced Plastic Rod of Composite Insulators Based on TG-FTIR Analysis |
Xie Congzhen1, Zeng Leilei1, Gan Yongye1, Ben Cheng1, Zhou Fusheng2 |
1. School of Electrical Power South China University of Technology Guangzhou 510640 China; 2. China South Power Grid International Co. Ltd Guangzhou 510080 China |
|
|
Abstract In recent years, abnormal heating phenomenon have occurred in composite insulators of AC 500 kV transmission lines in China, which have brought potential trouble to the safely operation of transmission lines. In order to study the mechanism of thermal decomposition of the composite insulator core, the article adopted the thermogravimetric infrared technology (TG-FTIR) and distributed activation energy model (DAEM), discussed the pyrolysis process and gas production law at different heating rate. The results show that both TG and DTG curves of the mandrel exhibit an identical variation tendency under different heating rates, and the initial and final temperatures of the pyrolysis move upwards with the increase of heating rate. The weight loss occurs mainly in the temperature ranging from 270~620℃, which can be divided into two stages. In the first stage (270~470℃), the thermal weight loss of the mandrel is mainly caused by decomposition of the epoxy resin matrix, during which the main gases products are aldehydes, ketones, acids and CH4. In the second stage (470~620℃), the thermal weight loss is due to the further oxidation of the residues produced by pyrolysis, the main gases outcome in this process are H2O, CO2 and CO. The apparent activation energy during the pyrolysis ranges from 104~524kJ/mol, and the increase and decrease of activation energy correspond to the first and second stage of the pyrolysis, respectively. Those results provide theoretical references for further relevant studies.
|
Received: 21 January 2018
Published: 26 September 2018
|
|
|
|
|
[1] 关志成. 绝缘子及输变电设备外绝缘[M]. 北京: 清华大学出版社, 2006. [2] 谢占山, 王璋奇, 陈原, 等. 压接式复合绝缘子疲劳破坏的机理分析[J]. 电工技术学报, 2014, 29(6): 296-302. Xie Zhanshan, Wang Zhangqi, Chen Yuan, et a1. Analysis of damage mechanism for crimped composite insulators[J]. Transactions of China Electrotechnical Society, 2014, 29(6): 296-302. [3] 蒋兴良, 潘杨, 汪泉霖, 等. 基于等效直径的复合绝缘子覆冰特性与结构参数分析[J]. 电工技术学报, 2017, 32(7): 190-196. Jang Xingliang, Pan Yang, Wang Quanlin, et al.Research on icing characteristics of composite insulator and structural parameter analysis based on equivalent diameter[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 190-196. [4] 陈豪, 陈原, 赵雪松, 等. 红外测温技术在复合绝缘子检测中的应用[J]. 电力设备, 2006, 7(9): 42-43. Chen Hao, Chen Yuan, Zhao Xuesong, et al.Application of infrared temperature measurement technology in detection of composite insulator[J]. Electric Equipment, 2006, 7(9): 42-43. [5] 程养春, 李成榕, 陈勉, 等. 高压输电线路复合绝缘子发热机理的研究[J]. 电网技术, 2005, 29(5): 57-60. Cheng Yangchun, Li Chengrong, Chen Mian, et al.Research on heating mechanism of composite insulator of high voltage transmission line[J]. Power System Technology, 2005, 29(5): 57-60. [6] 梁曦东, 高岩峰. 复合绝缘子酥朽断裂研究(一):酥朽断裂的主要特征、定义及判据[J]. 中国电机工程学报, 2016, 36(17): 4778-4786. Liang Xidong, Gao Yanfeng.Study on decay-like fracture of composite insulator: part I: the principal character, definition and criterion of decay-like fracture[J]. Proceedings of the CSEE, 2016, 36(17): 4778-4786. [7] 王祖林, 黄涛, 刘艳, 等. 合成绝缘子故障的红外热像在线检测[J]. 电网技术, 2003, 27(2): 17-20. Wang Zulin, Huang Tao, Liu Yan, et al.On-line inspection of defective composite insulators by infrared temperature measuremen[J]. Power System Technology, 2003, 27(2): 17-20. [8] Xie Congzhen, Gan Yongye, Ben Cheng, et al.Pyrolysis kinetics analysis on FRP rod of composite insulators by DSC[C]//2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE), Chengdu, 2016: 1-4. [9] 彭向阳, 李子健, 黄振, 等. 基于TG-DSC法的复合绝缘子硅橡胶主组分含量研究[J]. 南方电网技术, 2017(1): 36-44. Peng Xiangyang, Li Zijian, Huang Zhen, et al.TG-DSC coupling techniques based investigation on main component content of silicone rubber composite insulators[J]. Southern Power System Technology, 2017(1): 36-44. [10] Chen Can, Jia Zhidong, Ye Wei’an, et al.Thermo-oxidative aging analysis of HTV silicone rubber used for outdoor insulation[J]. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(3): 1761-1772. [11] 高岩峰, 梁曦东. 复合绝缘子酥朽断裂研究(二):酥朽断裂的试验模拟及预防措施讨论[J]. 中国电机工程学报, 2016, 36(18): 5070-5077. Gao Yanfeng, Liang Xidong.Study on decay-like fracture of composite insulator, part II: experimental simulation and preventive method discussion of decay-like fracture[J]. Proceedings of the CSEE, 2016, 36(18): 5070-5077. [12] Bassilakis R, Carangelo R M, Wójtowicz M A.TG-FTIR analysis of biomass pyrolysis[J]. Fuel, 2001, 80(12): 1765-1786. [13] Marcilla A, Gómez A, Menargues S.TG/FTIR study of the thermal pyrolysis of EVA copolymers[J]. Journal of Analytical & Applied Pyrolysis, 2005, 74(1-2): 224-230. [14] 王树荣, 刘倩, 郑赟, 等. 基于热重红外联用分析的生物质热裂解机理研究[J]. 工程热物理学报, 2006, 27(2): 351-353. Wang Shurong, Liu Qian, Zheng Yun, et al.Mechanism study of biomass pyrolysis by thermogravimetric analysis coupled with infrared spectroscopy[J]. Journal of Engineering Thermophysics, 2006, 27(2): 351-353. [15] 罗希韬, 王志奇, 武景丽, 等. 基于热重红外联用分析的PE、PS、PVC热解机理研究[J]. 燃料化学学报, 2012(9): 1147-1152. Luo Xitao, Wang Zhiqi, Wu Jingli, et al.Study on the pyrolysis mechanism of polyethylene, polystyrene, and polyvinyl chloride by TGA-FTIR[J]. Journal of Fuel Chemistry and Technology, 2012(9): 1147-1152. [16] Zhang Jinzhi, Chen Tianju, Wu Jingli, et al.A novel Gaussian DAEM-reaction model for the pyrolysis of cellulose, hemicellulose and lignin[J]. RSC Advances, 2014, 4: 17513-17520. [17] 汪佛池, 律方成, 杨升杰, 等. 基于FTIR 110 kV复合绝缘子硅橡胶伞裙老化性能分析[J]. 电工技术学报, 2015, 30(8): 297-302. Wang Fochi, Lü Fangcheng, Yang Shengjie, et al.The aging characteristic of silicon rubber sheds of 110 kV composite insulators based on FTIR test[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 297-302. [18] Bradbury A G W, Sakai Y, Shafizadeh F. A kinetic model for pyrolysis of cellulose[J]. Journal of Applied Polymer Science, 2010, 23(11): 3271-3280. [19] 王希林, 王晗, 赵晨龙. 基于激光诱导击穿光谱的室温硫化硅橡胶材料成分研究[J]. 电工技术学报, 2016, 31(24): 96-104. Wang Xilin, Wang Han, Zhao Chenlong.Composition analysis of room temperature vulcanized material with laser-induced breakdown spectroscopy technique[J]. Transactions of China Electrotechnical Society, 2016, 31(24): 96-104. [20] Chen Dengyu, Zheng Yan, Zhu Xifeng.In-depth investigation on the pyrolysis kinetics of raw biomass, part I: kinetic analysis for the drying and devolatilization stages[J]. Bioresource Technology, 2013, 131: 40-46. [21] 马中青, 徐嘉炎, 叶结旺, 等. 基于热重红外联用和分布活化能模型的樟子松热解机理研究[J]. 西南林业大学学报, 2015(3): 90-96. Ma Zhongqing, Xu Jiayan, Ye Jiewang, et al.Determination of pyrolysis characteristics and kinetics of pinus sylvestris var. mongolica using TGA-FTIR and distributed activation energy model[J]. Journal of Southwest Forestry University, 2015(3): 90-96. |
|
|
|