|
|
The Application of Torque Monitoring Signal of Normal Servo in Isokinetic Muscle Test System |
Xiao Jinzhuang1, Zhao Shuai1, Wang Hongrui1, Yang Xincai2 |
1. College of Electronic & Information Engineering Hebei University Baoding 071000 China; 2. Healthy Rehabilitation Section Affiliated Hospital of Hebei University Baoding 071000 China |
|
|
Abstract To avoid extra torque sensor in isokinetic muscle testing system, a method was developed based on normal servo equipment with torque monitoring signal. Under velocity mode of servo equipment, encoder feedback signal was applied to design velocity close-loop controller, and isokinetic was implemented with high accuracy; muscle force was acquired through the transformation of torque monitoring signal attached in servo equipment. By using hardware-in-loop simulation, a whole isokinetic muscle testing system was constructed by introducing the software Simulink and the motion controller Quanser Q8. To verify the feasibility of this method, selected five college boys participated in the isokinetic muscle testing. The kinematic muscle parameters of their elbow joint motion were measured. Through comparing with public results, it showed that the peak torque (PT) and other indicators lie in the ranges of published indicators, which verify the practical value of the constructing method of given isokinetic muscle test system.
|
Received: 26 April 2018
Published: 26 September 2018
|
|
|
|
|
[1] Natália M B, Luiza B S, Thadeu E C, et al.Reliability of isometric and isokinetic peak torque of elbow flexors and elbow extensors muscles in trained swimmers[J]. Revista Brasileira de Cineantropometria E Desempenho Humano, 2015, 17(5): 507-516. [2] Greig M, Marchant D.Speed dependant influence of attentional focusing instructions on force production and muscular activity during isokinetic elbow flexions[J]. Human Movement Science, 2014, 33(2): 135-148. [3] Torpel A, Becker T, Thiers A, et al.Inter-session reliability of isokinetic strength testing in knee and elbow extension and flexion using the BTE primus RS[J]. Journal of Sport Rehabilitation, 2017, 26(4): 1-14. [4] 左月飞, 张捷, 刘闯, 等. 基于自抗扰控制的永磁同步电机位置伺服系统一体化设计[J]. 电工技术学报, 2016, 31(11): 51-58. Zuo Yuefei, Zhang Jie, Liu Chuang, et al.Integrated design for permanent magnet synchronous motor servo system based on active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2016, 31(11): 51-58. [5] 赵希梅, 武文斌. 基于周期学习扰动观测器的永磁直线同步电机伺服系统控制[J]. 电工技术学报, 2018, 33(9): 1985-1993. Zhao Ximei, Wu Wenbin.Control of permanent magnet linear synchronous motor servo system based on periodic learning disturbance observer[J]. Transactions of China Electrotechnical Society, 2018, 33(9): 1985-1993. [6] 曾岳南, 曾祥彩, 周斌. 永磁同步电机传动系统电流环非线性自抗扰控制器的设计与稳定性分析[J].电工技术学报, 2017, 32(17): 135-143. Zeng Yuenan, Zeng Xiangcai, Zhou Bin.Nonlinear active disturbance rejection controller design for current loop of PMSM drive system and its stability analysis[J]. Transactions of China Electrotechnical Society, 2017, 32(17): 135-143. [7] 赵希梅, 金鸿雁. 永磁直线同步电机伺服系统的分段变论域模糊迭代学习控制[J]. 电工技术学报, 2017, 32(23): 9-15. Zhao Ximei, Jin Hongyan.Segmented variable universe fuzzy iterative learning control for permanent magnet linear synchronous motor servo system[J]. Transactions of China Electrotechnical Society, 2017, 32(23): 9-15. [8] 张磊, 苏为洲. 伺服系统的反馈控制设计研究综述[J]. 控制理论与应用, 2014, 31(5): 545-559. Zhang Lei, Su Weizhou.Feedback control design of servo systems: a review[J]. Control Theory & Applications, 2014, 31(5): 545-559. [9] 莫会成, 闵琳. 现代高性能永磁交流伺服系统综述—传感装置与技术篇[J]. 电工技术学报, 2015, 30(6): 10-21. Mo Huicheng, Min Lin.Summary of modern high performance permanent magnet AC servo system--sensor device and technology[J]. Transactions of China Electrotechnical Society, 2015, 30(6): 10-21. [10] Dae H K, Trong H N, Pandu S P, et al.Servo system design for speed control of AC induction motors using polynomial differential operator[J]. International Journal of Control, Automation and Systems, 2017, 15(3): 1207-1216. [11] 陈友东, 季旭东, 谷平平, 等. 无传感器的工业机器人负载识别方法[J]. 北京航空航天大学学报, 2015, 41(9): 1595-1599. Chen Youdong, Ji Xudong, Gu Pingping, et al.Identifying method of load for sensorless industrial robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1595-1599. [12] 边江楠, 冯顺山, 邵志宇, 等. 灵巧航行体半实物仿真系统设计方法与应用[J]. 北京理工大学学报, 2013, 31(1): 26-30. Bian Jiangnan, Feng Shunshan, Shao Zhiyu, et al.Design and application of hardware-in-the-loop simulation system for smart underwater vehicles[J]. Transactions of Beijing Institute of Technology, 2013, 31(1): 26-30. [13] 韩金, 陈国华, 张爱军. 基于3D模型并行处理的机器人半实物仿真平台[J]. 计算机集成制造系统, 2016(1): 281-286. Han Jin, Chen Guohua, Zhang Aijun.Semi-physical motion simulation of robot based on 3D mode parallel processing[J]. Computer Integrated Manufacturing Systems, 2016(1): 281-286. [14] 陈羽彪. 网球专选学生肘关节屈伸肌群的等速测试与分析-以湖南工业大学为例[J]. 当代体育科技, 2016, 6(24): 137-138. Chen Yubiao.Isokinetic testing and analysis of elbow flexion and extension muscles about tennis students-taking Hunan University of Technology as an Example[J]. Contemporary Sports Technology, 2016, 6(24): 137-138. [15] 胡水清, 米奕翔, 蒋云飞. Isomed 2000测试系统的等速向心测试方法的可信度分析[J]. 中国体育科技, 2014, 50(5): 100-106. Hu Shuiqing, Mi Yixiang, Jiang Yunfei.The reliability analysis of isokinetic measurement of isomed 2000 dynamometer[J]. China Sport Science and Technology, 2014, 50(5): 100-106. |
|
|
|