|
|
A Staged Analytical Model for Power System Fault Diagnosis |
Xu Biao, Yin Xianggen, Zhang Zhe, Pang Shuai, Li Xusheng |
State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 China |
|
|
Abstract The existing analytical models had to extern the variable dimension to consider the false alarms, thus they were difficult or time-consuming to be solved. To deal with this problem, a staged analytical model for power system fault diagnosis is proposed in this paper. In the first stage, the elements’ influence on the objective function was analyzed, and the fault measurement index, which considers both the protection relation and the circuit breaker relation, was then established to filter the suspect elements. In the second stage, the actual states of the protection and the circuit breaker were introduced into the fault hypothesis, and an improved objective function was constructed combining both the logic errors and information errors. The discrete particle swarm optimization was used to solve the above optimization problem, and according to the best solution, the fault elements as well as the actual states of the relays and circuit breakers can be obtained. Finally, the effectiveness and fault-tolerance of the proposed method were verified by many complex fault scenarios of the IEEE 39-bus system, which shows that this method has good prospect, since it can estimate the fault elements and evaluate abnormal alarms quickly and accurately, even with many false alarms.
|
Received: 11 September 2017
Published: 14 September 2018
|
|
|
|
|
[1] 程学珍, 林晓晓, 朱春华, 等. 基于时序信息的模糊Petri网电网故障诊断方法[J]. 电工技术学报, 2017, 32(14): 229-237. Cheng Xuezhen, Lin Xiaoxiao, Zhu Chunhua, et al.Power system fault analysis based on hierarchical fuzzy Petri net considering time association character[J]. Transactions of China Electrotechnical Society, 2017, 32(14): 229-237. [2] 赵伟, 白晓民, 丁剑, 等. 基于协同式专家系统及多智能体技术的电网故障诊断方法[J]. 中国电机工程学报, 2006, 26(20): 1-8. Zhao Wei, Bai Xiaomin, Ding Jian, et al.A new fault diagnosis approach of power grid based on cooperative expert system and multi agent technology[J]. Proceedings of the CSEE, 2006, 26(20): 1-8. [3] 杨凌霄, 朱亚丽. 基于概率神经网络的高压断路器故障诊断[J]. 电力系统保护与控制, 2015, 43(10): 62-67. Yang Lingxiao, Zhu Yali.High voltage circuit breaker fault diagnosis of probabilistic neural network[J]. Power System Protection and Control, 2015, 43(10): 62-67. [4] 徐彪, 尹项根, 张哲, 等. 基于拓扑图元信息融合的电网故障诊断模型[J]. 电工技术学报, 2018, 33(3): 512-522. Xu Biao, Yin Xianggen, Zhang Zhe, et al.Power grid fault diagnosis model based on information fusion of topological graph element[J]. Transactions of China Electrotechnical Society, 2018, 33(3): 512-522. [5] 程学珍, 陈强, 于永进, 等. 基于最大似然译码字的Petri网电网故障诊断方法[J]. 电工技术学报, 2015, 30(15): 46-52. Cheng Xuezhen, Chen Qiang, Yu Yongjin, et al.A fault diagnosis approach of power networks based on maximum likelihood decoding Petri net models[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 46-52. [6] 陈强, 程学珍, 刘建航, 等. 基于分层变迁的WFPN电网故障分析[J]. 电工技术学报, 2016, 31(15): 125-135. Chen Qiang, Cheng Xuezhen, Liu Jianhang, et al.The analysis method of power grid fault based on hierarchical transition weighted fuzzy petri net[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 125-135. [7] 白展, 苗世洪, 孙雁斌, 等. 计及时间约束的改进模糊Petri网故障诊断模型[J]. 电工技术学报, 2016, 31(23): 107-115. Bai Zhan, Miao Shihong, Sun Yanbin, et al.Fault diagnosis model based on improved fuzzy petri net considering time constraints[J]. Transactions of China Electrotechnical Society, 2016, 31(23): 107-115. [8] 文福拴, 韩祯祥. 基于遗传算法和模拟退火算法的电力系统的故障诊断[J]. 中国电机工程学报,1994, 14(3): 29-35. Wen Fushuan, Han Zhenxiang.Power grid fault diagnosis aiming at reproducing the fault process[J]. Proceedings of the CSEE, 1994, 14(3): 29-35. [9] 翁汉琍, 毛鹏, 林湘宁. 一种改进的电网故障诊断优化模型[J]. 电力系统自动化, 2007, 31(7): 66-70. Weng Hanli, Mao Peng, Lin Xiangning.An improved model for optimizing power system fault diagnosis[J]. Automation of Electric Power Systems, 2007, 31(7): 66-70. [10] Lin Xiangning, Ke Shuohao, Li Zhengtian, et al.A fault diagnosis method of power systems based on improved objective function and genetic algorithm-Tabu search[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1268-1274. [11] 文福拴, 钱源平, 韩祯祥, 等. 利用保护和断路器信息的电力系统故障诊断与不可观测的保护的状态识别的模型与Tabu 搜索方法[J]. 电工技术学报, 1998, 13(5): 1-8. Wen Fushuan, Qian Yuanping, Han Zhenxiang, et al.A Tabu-search based approach to fault sect ion estimation and state identification of unobserved protective relays in power systems using information from protective relays and circuit breakers[J]. Transactions of China Electrotechnical Society, 1998, 13(5): 1-8. [12] 熊国江, 石东源. 电网故障诊断改进解析模型及其自适应生物地理学优化方法[J]. 电工技术学报, 2014, 29(4): 205-211. Xiong Guojiang, Shi Dongyuan.An improved analytic model for fault diagnosis of power grids and its self-adaptive biogeography based optimization method[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 205-211. [13] 郭文鑫, 文福拴, 廖志伟, 等. 计及保护和断路器误动与拒动的电力系统故障诊断解析模型[J]. 电力系统自动化, 2009, 33(24): 6-10. Guo Wenxin, Wen Fushuan, Liao Zhiwei, et al.An analytic model for power system fault diagnosis with malfunctions of protective relays and circuit breakers taken into account[J]. Automation of Electric Power Systems, 2009, 33(24): 6-10. [14] 刘道兵, 顾雪平, 李海鹏. 电网故障诊断的一种完全解析模型[J]. 中国电机工程学报, 2011, 31(34): 85-92. Liu Daobing, Gu Xueping, Li Haipeng.A complete analytic model for fault diagnosis of power systems[J]. Proceedings of the CSEE, 2011, 31(34): 85-92. [15] 刘道兵, 顾雪平, 梁海平, 等. 电网故障诊断完全解析模型的解集评价与最优解求取[J]. 中国电机工程学报, 2014, 34(31): 5668-5676. Liu Daobing, Gu Xueping, Liang Haiping, et al.Solution evaluation and optimal solution discrimination of a complete analytical model for power system fault diagnosis[J]. Proceedings of the CSEE, 2014, 34(31): 5668-5676. [16] 赵冬梅, 张旭, 魏娟, 等. 以重现故障过程为目的的电网故障诊断[J]. 中国电机工程学报, 2014, 34(13): 2116-2123. Zhao Dongmei, Zhang Xu, Wei Juan, et al.Power grid fault diagnosis aiming at reproducing the fault process[J]. Proceedings of the CSEE, 2014, 34(13): 2116-2123. [17] 江雪晨, 王大志, 张翠玲, 等. 利用模型诊断降维的电网故障诊断完全解析方法[J]. 中国电机工程学报, 2016, 36(23): 6371-6378. Jiang Xuechen, Wang Dazhi, Zhang Cuiling, et al.A complete analytic method for fault diagnosis of power systems based on model-based diagnosis for dimensionality reduction[J]. Proceedings of the CSEE, 2016, 36(23): 6371-6378. [18] 韩旭杉, 王玉财, 吕飞鹏, 等. 基于故障关联系数的广域后备保护新方法[J]. 电力系统保护与控制, 2017, 45(6): 48-54. Han Xushan, Wang Yucai, Lü Feipeng, et al.A new algorithm of wide area backup protection based on fault correlation coefficient[J]. Power System Protection and Control, 2017, 45(6): 48-54. [19] 李振兴, 尹项根, 张哲, 等. 基于多信息融合的广域继电保护新算法[J]. 电力系统自动化, 2011, 35(9): 14-18. Li Zhenxing, Yin Xianggen, Zhang Zhe, et al.Wide area protection algorithm based on multi-information fusion[J]. Automation of Electric Power Systems, 2011, 35(9): 14-18. [20] 张旭, 魏娟, 赵冬梅, 等. 一种用于电网故障诊断的遥信信息解析方法[J]. 中国电机工程学报, 2014, 34(22): 3824-3833. Zhang Xu, Wei Juan, Zhao Dongmei, et al.An analytic alarm information method for power grid fault diagnosis[J]. Proceedings of the CSEE, 2014, 34(22): 3824-3833. [21] 朱永利, 杨以涵, 张文勤, 等. 高压电网事故处理系统中的实时结线分析及环网过负荷校正[J]. 中国电机工程学报, 1994, 14(3): 52-58. Zhu Yongli, Yang Yihan, Zhang Wenqin, et al.New methods used in a computer aided restoration system for realtime electric network topology determination & overloads correction[J]. Proceedings of the CSEE, 1994, 14(3): 52-58. [22] Kennedy J, Eberhart R C.A discrete binary version of the particle swarm algorithm[C]//1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, 1997, 5: 4104-4108. [23] 张子泳, 仉梦林, 李莎. 基于多目标粒子群算法的电力系统环境经济调度研究[J].电力系统保护与控制, 2017, 45(10): 1-10. Zhang Ziyong, Zhang Menglin, Li Sha.Environmental economic power dispatch based on multi-objective particle swarm constraint optimization algorithm[J]. Power System Protection and Control, 2017, 45(10): 1-10. [24] 顾雪平, 刘道兵, 孙海新, 等. 面向SCADA系统的电网故障诊断信息的获取[J]. 电网技术, 2012, 36(6): 64-70. Gu Xueping, Liu Daobing, Sun Haixin, et al.Acquisition of power system fault diagnosis information from SCADA System[J]. Power System Technology, 2012, 36(6): 64-70. |
|
|
|