|
|
Extended State Observer with Cogging Force Compensation for Sensorless Control Strategy of Linear Flux-Switching Permanent Magnet Machine |
Meng Gaojun1, Yuan Ye2, Sun Yukun1,2, Zhu Zhiying1, Liu Haitao1 |
1. Jiangsu Collaborative Innovation Center for Smart Distribution Network Nanjing 210000 China; 2. School of Electrical and Information Engineering Jiangsu University Zhenjiang 212013 China |
|
|
Abstract For the defects existing in cogging force caused by double salient structure of linear flux-switching permanent magnet (LFSPM) machine, a strategy about extended state observer (ESO) with control of a position-independent sensor and cogging force compensation was proposed to improve the control performance of the sensorless in LFSPM. Primarily, a back electromotive force (EMF) model was built, and a method introducing back EMF estimation value into stator current observer was studied. And then the back EMF in the current state function under the two-phase stationary reference frame, considered as disturbance of the system, performed exact estimation by using an ESO to increase the precision of observation. On this basis, the adaptive sliding-mode controller was designed, in which harmonic current was used for feed-forward compensation of the observed cogging force to eliminate the estimation errors in mover position and speed induced by time variation of cogging force and improve the performance of sliding-mode controller. Simulation results showed that the measured values of the system disturbance can quickly and accurately follow the real values, and meanwhile further suppress the position estimation error. Experimental evaluations of the proposed scheme were carried out on an A&D5435-controlled LFSPM drive platform to verify and confirm the practical efficiency of the proposed approach. The exact position tracking of LFSPM motor under different working conditions was realized.
|
Received: 14 August 2017
Published: 14 September 2018
|
|
|
|
|
[1] Huang Lei, Yu Haitao, Hu Minqiang, et al.Electromagnetic design of a 10-kW-class flux-switching linear superconducting hybrid excitation generator for wave energy conversion[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-6. [2] 曹瑞武, 程明, 花为, 等. 磁路互补型模块化磁通切换永磁直线电机[J]. 中国电机工程学报, 2011, 31(6): 58-65. Cao Ruiwu, Cheng Ming, Hua Wei, et al.Novel modularized flux-switching permanent magnet linear machine with complentary magnetic circuits[J]. Proceedings of the CSEE, 2011, 31(6): 58-65. [3] Zhu Xiaoyong, Chen Yunyun, Xiang Zixuan, et al.Electromagnetic performance analysis of a new stator-partitioned flux memory machine capable of online flux control[J]. IEEE Transactions on Magnetics, 2016, 57(7): 1-4. [4] Acarnley P P, Watson J F.Review of position-sensorless operation of brushless permanent-magnet machines[J]. IEEE Transactions on Industrial Electronics, 2006, 53(2): 352-362. [5] 刘计龙, 肖飞, 沈洋, 等. 永磁同步电机无位置传感器控制技术研究综述[J]. 电工技术学报, 2017, 32(16): 76-88. Liu Jilong, Xiao Fei, Shen Yang, et al.Position- sensorless control technology of permanent-magnet synchronous motor-a review[J]. Transactions of China Electrotechnical Society, 2017, 32(16): 76-88. [6] 许培林, 邓智泉, 王宇, 等. 12/10 极永磁磁通切换电机转子初始位置检测[J]. 中国电机工程学报, 2013, 33(9): 104-113. Xu Peilin, Deng Zhiquan, Wang Yu, et al.Initial rotor position detection of 12/10 flux-switching permanent magnet motors[J]. Proceedings of the CSEE, 2013, 33(9): 104-113. [7] 孔龙涛, 程明, 张邦富, 等. 基于模型参考自适应系统的模块化磁通切换永磁直线电机无位置传感器控制[J].电工技术学报, 2016, 31(17): 132-139. Kong Longtao, Cheng Ming, Zhang Bangfu, et al.Position sensorless control of modular linear flux-switching permanent magnet machine based on model reference adaptive system[J]. Transactions of China Electrotechnical Society, 2016, 31(17): 132-139. [8] Reigosa D, Fernandez D, Tanimoto T.Comparative analysis of BEMF and pulsating high-frequency current injection methods for PM temperature estimation in PMSMs[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3691-3699. [9] 邱鑫, 黄文新, 卜飞飞. 内置式永磁同步电机宽转速范围无位置传感器直接转矩控制[J]. 电工技术学报, 2014, 29(9): 92-99. Qiu Xin, Huang Wenxin, Bu Feifei.Sensorless direct torque control of interior permanent magnet synchronous machines over wide speed range[J]. Transactions of China Electrotechnical Society, 2014, 29(9): 92-99. [10] Liu J M, Zhu Z Q.Novel sensorless control strategy with injection of high-frequency pulsating carrier signal into stationary reference frame[J]. IEEE Transactions on Industry Applications, 2014, 50(4): 2574-2583. [11] Wang Gaolin, Yang Lei, Zhang Guoqiang, et al.Comparative investigation of pseudorandom high- frequency signal injection schemes for sensorless IPMSM drives[J]. IEEE Transactions on Power Electronics, 2017, 32(3): 2123-2132. [12] 李洁, 周波, 刘兵, 等. 表贴式永磁同步电机无位置传感器起动新方法[J]. 中国电机工程学报, 2016, 36(8): 2252-2259. Li Jie, Zhou Bo, Liu Bing, et al.A novel starting strategy of sensorless control for surface mounted permanent magnet synchronous machines[J]. Proceedings of the CSEE, 2016, 36(8): 2252-2259. [13] 毛永乐, 杨家强, 赵寿华, 等. 带负载转矩估算的非线性观测器内嵌式永磁同步电机无位置传感器控制策略[J]. 中国电机工程学报, 2016, 36(8): 2252-2259. Mao Yongle, Yang Jiaqiang, Zhao Shouhua, et al.Nonlinear observer with load-torque estimation for sensorless control strategy of interior permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2016, 36(8): 2252-2259. [14] Quang N K, Hieu N T.FPGA-based sensorless PMSM speed control using reduced-order extended Kalman filters[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6574-6582. [15] Zhao Yue, Qiao Wei, Wu Long.Improved rotor position and speed estimators for sensorless control of interior permanent-magnet synchronous machines[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 3(2): 627-639. [16] 孟高军, 余海涛, 黄磊, 等. 基于x域重复控制的磁通切换永磁直线电机定位力抑制方法[J], 中国电机工程学报, 2015, 35(16): 4224-4231. Meng Gaojun, Yu Haitao, Huang lei, et al. A cogging force reduction method for linear flux-switching permanent magnet machines based on the x-domain repetitive controller[J]. Proceedings of the CSEE, 2015, 35(16): 4224-4231. [17] Jia Hongyun, Cheng Ming, Hua Wei, et al.Torque ripple suppression in flux-switching PM motor by harmonic current injection based on voltage space-vector modulation[J]. IEEE Transactions on Magnetics, 2010, 46(4): 1527-1531. [18] 贾红云, 程明, 花为, 等. 基于电流谐波注入的磁通切换永磁电机定位力矩补偿方法[J]. 中国电机工程学报, 2009, 29(27): 83-89. Jia Hongyun, Cheng Ming, Hua Wei, et al.Cogging torque compensation for flux-switching permanent magnet motor based on current harmonics injection[J]. Proceedings of the CSEE, 2009, 29(27): 83-89. [19] da Silva G S, Vieira R P, Rech C. Discrete-time sliding-mode observer for capacitor voltage control in modular multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2017, 60(12): 5436-5446. [20] Bernardes T, Montagner V F, Gründling H A, et al.Discrete-time sliding mode observer for sensorless vector control of permanent magnet synchronous machine[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 1679-1691. [21] 樊英, 周晓飞, 张向阳, 等. 基于新型趋近律和混合速度控制器的IPMSM调速系统滑模变结构控制[J]. 电工技术学报, 2017, 32(5): 9-18. Fan Ying, Zhou Xiaofei, Zhang Xiangyang, et al.Sliding mode control of IPMSM system based on a new reaching law and a hybrid speed controller[J]. Transactions of China Electrotechnical Society, 2017, 32(5): 9-18. [22] Fan Ying, Zhang Li, Cheng Ming, et al.Sensorless SVPWM-FADTC of a new flux-modulated permanent magnet wheel motor based on a wide-speed sliding mode observer[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 3143-3151. [23] 刘颖, 周波, 方斯琛. 基于新型扰动观测器的永磁同步电机滑模控制[J]. 中国电机工程学报, 2010, 30(9): 80-85. Liu Ying, Zhou Bo, Fang Sichen.Sliding mode control of PMSM based on a novel disturbance observer[J]. Proceedings of the CSEE, 2010, 30(9): 80-85. [24] Roy A M C, Mohammad S I. Application of a sliding mode observer for position and speed estimation in switched reluctance motor drives[J]. IEEE Transactions on Industry Application, 2001, 37(1): 51-58. [25] 陆婋泉, 林鹤云, 韩俊林, 等. 永磁同步电机的扰动观测器无位置传感器控制[J]. 中国电机工程学报, 2016, 36(8): 1387-1394. Lu Xiaoquan, Lin Heyun, Han Junlin, et al.Position sensorless control of permanent magnet synchronous machine using a disturbance observer[J]. Proceedings of the CSEE, 2016, 36(8): 1387-1394. |
|
|
|