|
|
An Open Circuit Voltage and Internal Resistance Estimation Method of Lithium-Ion Batteries with Constant Current Tests |
Chen Yingjie1, Yang Geng1, Zu Haipeng2, Sun Xiaofeng2 |
1. Department of Automation Tsinghua University Beijing 100084 China; 2. School of Electrical Engineering Yanshan University Qinhuangdao 066004 China |
|
|
Abstract Open circuit voltage (OCV) and internal resistance (R) are key parameters in equivalent circuit model of lithium-ion batteries and are used to analyze the power capability, uniformity and aging status of the batteries. OCV and R are nonlinear functions of state of charge (SOC), current (I) and battery temperature (Tbat) and it is hard to give detailed, fast and accurate OCV and R estimation results at the same time. This paper proposes an OCV and R estimation method based on tests and corresponding data dealing process. The method designs constant current tests under different ambient temperatures to give detailed data and uses big test current to shorten test time. Based on battery electrochemical mechanism, the method designs a set of data dealing process to solve the SOC and Tbat changing and coupling problem during test and to consider the nonlinear characteristics of the batteries, consequently providing both OCV{SOC, Tbat} and R{SOC, I, Tbat} curves accurately. Compared with existing methods, the method gives more accurate and detailed results with less test time, thus more suitable for degradation evaluation application such as incremental capacity analysis. Test results have verified the advantages.
|
Received: 18 August 2017
Published: 14 September 2018
|
|
|
|
|
[1] Linden D.Handbook of batteries[M]. New York: McGraw-Hill, 2002. [2] Ven AV D, Bhattacharya J, Belak A A.Understanding Li diffusion in Li-intercalation compounds[J]. Accounts of Chemical Research, 2013, 46(5): 1216. [3] 刘毅, 谭国俊, 何晓群. 优化电池模型的自适应Sigma卡尔曼荷电状态估算[J]. 电工技术学报, 2017, 32(2): 108-118. Liu Yi, Tan Guojun, He Xiaoqun.Optimized battery model based adaptive Sigma kalman filter for state of charge estimation[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 108-118. [4] 刘红锐, 张昭怀. 锂离子电池组充放电均衡器及均衡策略[J]. 电工技术学报, 2015, 30(8): 186-192. Liu Hongrui, Zhang Zhaohuai.The equalizer of charging and discharging and the balancing strategies for lithium-ion battery pack[J]. Transactions of China Electrotechnical Society, 2015, 30(8): 186-192. [5] 李晓宇, 徐佳宁, 胡泽辉, 等. 磷酸铁锂电池梯次利用健康特征参数提取方法[J]. 电工技术学报, 2018, 33(1): 9-16. Li Xiaoyu, Xu Jianing, Hu Zehui, et al.The health parameter estimation method for LiFePO4 battery echelon use[J]. Transactions of China Electrotechnical Society, 2018, 33(1): 9-16. [6] Cassani P A, Williamson S S.Design, testing, and validation of a simplified control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 3956-3962. [7] Waag W, Fleischer C, Sauer D U.On-line estimation of lithium-ion battery impedance parameters using a novel varied-parameters approach[J]. Journal of Power Sources, 2013, 237(3): 260-269. [8] 刘伟, 吴海桑, 何志超, 等. 一种均衡考虑锂电池内部能量损耗和充电速度的多段恒流充电方法[J]. 电工技术学报, 2017, 32(9): 112-120. Liu Wei, Wu Haisang, He Zhichao, et al.A multistage current charging method for Li-ion battery considering balance of internal consumption and charging speed[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 112-120. [9] 刘新天, 何耀, 曾国建, 等. 考虑温度影响的锂电池功率状态估计[J]. 电工技术学报, 2016, 31(13): 155-163. Liu Xintian, He Yao, Zeng Guojian, et al.State-of-power estimation for Li-ion battery considering the effect of temperature[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 155-163. [10] Pilatowicz G, Budde-Meiwes H, Schulte D, et al.Simulation of SLI lead-acid batteries for SoC, aging and cranking capability prediction in automotive applications[J]. Journal of the Electrochemical Society, 2012, 159(9): A1410-A1419. [11] Schiffer J, Sauer D U, Bindner H, et al.Model prediction for ranking lead-acid batteries according to expected lifetime in renewable energy systems and autonomous power-supply systems[J]. Journal of Power Sources, 2007, 168(1): 66-78. [12] 国宗, 韦钢, 郭运城, 等. 面向供电能力提升的配电网储能功率动态优化[J]. 电力系统保护与控制, 2015, 43(19): 1-8. Guo Zong, Wei Gang, Guo Yuncheng, et al.Dynamic optimization of energy storage power in distribution network based on power supply capacity[J]. Power System Protection and Control, 2015, 43(19): 1-8. [13] Chan H L.A new battery model for use with battery energy storage systems and electric vehicles power systems[C]//IEEE Power Engineering Society Winter Meeting, Singapore, 2000, 1: 470-475. [14] Bard A J, Faulkner L R.Electrochemical methods: fundamentals and applications[M]. New York: Wiley, 1980. [15] Barai A, Widanage W D, Marco J, et al.A study of the open circuit voltage characterization technique and hysteresis assessment of lithium-ion cells[J]. Journal of Power Sources, 2015, 295: 99-107. [16] Waag W, Käbitz S, Sauer D U.Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application[J]. Applied Energy, 2013, 102(2): 885-897. [17] Zhe Li, Jun Huang, Liaw B Y, et al.On state-of- charge determination for lithium-ion batteries[J]. Journal of Power Sources, 2017, 348: 281-301. [18] 孙金磊, 朱春波, 李磊, 等. 电动汽车动力电池温度在线估计方法[J]. 电工技术学报, 2017, 32(7): 197-203. Sun Jinlei, Zhu Chunbo, Li Lei, et al.Online temperature estimation method for electric vehicle power battery[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 197-203. [19] USABC manuals. Battery test manual for electric vehicles[S]. 3rd ed. U.S. Department of Energy, 2015. [20] ISO 12405-1. Electrically propelled road vehicles test specification for lithium-ion traction battery packs and systemsSO 12405-1. Electrically propelled road vehicles test specification for lithium-ion traction battery packs and systems[S]. Institution, British Standards, 2011. [21] Pop V, Bergveld H J, Danilov D, et al.Methods for measuring and modelling a battery's electro-motive force[M]//Battery Management Systems. Dordrecht: Springer, 2008. [22] Pei L, Wang T, Lu R, et al.Development of a voltage relaxation model for rapid open-circuit voltage prediction in lithium-ion batteries[J]. Journal of Power Sources, 2014, 253(5): 412-418. [23] Pop V, Bergveld H J, Veld op het J H G, et al. Modeling battery behavior for accurate state-of-charge indication[J]. Journal of the Electrochemical Society, 2006, 153(11): A2013-A2022. [24] Weng Ccaihao, Sun Jing, Peng H.A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring[J]. Journal of Power Sources, 2014, 258(14): 228-237. [25] Onda K, Kameyama H, Hanamoto T, et al.Experimental study on heat generation behavior of small lithium-ion secondary batteries[J]. Journal of the Electrochemical Society, 2003, 150(3): 989-996. [26] 何志超, 杨耕, 卢兰光, 等. 基于恒流外特性和SOC的电池直流内阻测试方法[J]. 清华大学学报(自然科学版), 2015, 55(5): 532-537. He Zhichao, Yang Geng, Lu Languang, et al.Battery DC internal resistance test method based on the constant current external characteristics and SOC[J]. Journal of Tsinghua University(Sci & Tech), 2015, 55(5): 532-537. [27] Lu Languang, Han Xuebing, Hua Jianfeng, et al.A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of Power Sources, 2013, 226(3): 272-288. [28] Pattipati B, Balasingam B, Avvari G V, et al.Open circuit voltage characterization of lithium-ion batteries[J]. Journal of Power Sources, 2014, 269(11): 317-333. [29] Piłatowicz G, Marongiu A, Drillkens J, et al.A critical overview of definitions and determination techniques of the internal resistance using lithium-ion, lead-acid, nickel metal-hydride batteries and electrochemical double-layer capacitors as examples[J]. Journal of Power Sources, 2015, 296(11): 365-376. [30] Jossen A.Fundamentals of battery dynamics[J]. Journal of Power Sources, 2006, 154(2): 530-538. |
|
|
|