|
|
Research on Control Strategy of Modular Multilevel Converter based Medium-Voltage Direct Current Traction Power Supply System |
Ge Yinbo1, Hu Haitao1, Yang Xiaowei1, He Zhengyou1, Gao Shibin1,2 |
1. School of Electrical Engineering Southwest Jiaotong University Chengdu 611756 China; 2. National Rail Transit Electrification and Automation Engineering Technique Research Center Southwest Jiaotong University Chengdu 611756 China |
|
|
Abstract The traditional AC traction power supply system (TPSS) suffers from the problems such as power quality and neutral section. In this paper, the modular multilevel converter (MMC) based medium-voltage direct current (MVDC) TPSS for high-speed railways was studied. For the system operation and control, a coordinated control strategy for parallel operation between traction substations (TSSs) was proposed to restrain the traction network DC voltage fluctuation. Consequently, the traction network DC voltage quality can be improved to make the system more reliable and have higher plug-and-play performance. The small-signal model of the proposed strategy based on simplified equivalent model of MMC was built, and then the small-signal transfer function between the traction network voltage and the output current of TSS was deduced. The influence of TSS output current feed-forward control on the dynamic performance of the system was analyzed. The control system stability in the case of moving load was analyzed. Finally, considering the actual operation condition of TPSS, the simulation model was established and the proposed strategy was verified.
|
Received: 02 April 2018
Published: 03 September 2018
|
|
|
|
|
[1] 李群湛. 我国高速铁路牵引供电发展的若干关键技术问题[J]. 铁道学报, 2010, 32(4): 119-124. Li Qunzhan.On some technical key problems in the development of traction power supply system for high-speed railway in China[J]. Journal of the China Railway Society, 2010, 32(4): 119-124. [2] Abrahamsson L, Kjellqvist T, Ostlund S.High- voltage DC-feeder solution for electric railways[J]. IET Power Electronics, 2012, 5(9): 1776-1784. [3] 张雪原, 吴广宁, 边姗姗, 等. 一种新型牵引供电网构想. 铁道学报[J], 2007, 29(3): 100-106. Zhang Xueyuan, Wu Guangning, Bian Shanshan, et al.A new traction power grid on main railways[J]. Journal of the China Railway Society, 2007, 29(3): 100-106. [4] Gomez-Exposito A, Mauricio J M, Maza-Ortega J M. VSC-based MVDC railway electrification system[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 422-431. [5] He X, Shu Z, Peng X, et al.Advanced cophase traction power supply system based on three-phase to single-phase converter[J]. IEEE Transactions on Power Electronics, 2014, 29(10): 5323-5333. [6] 肖刚, 张译文, 郭育华, 等. 基于MMC的同相供电潮流控制器控制策略研究[J]. 电力系统保护与控制, 2017, 45(14): 79-84. Xiao Gang, Zhang Yiwen, Guo Yuhua, et al.Study on the control strategy of power flow controller based on MMC in co-phase power supply system[J]. Power System Protection and Control, 2017, 45(14): 79-84. [7] 宋平岗, 林家通, 李云丰, 等. 采用MMC-RPC治理牵引供电系统负序和谐波的PIR控制策略[J]. 电工技术学报, 2017, 32(12): 108-116. Song Pinggang, Lin Jiatong, Li Yunfeng, et al.PIR control strategy on compensation of negative sequence and harmonic for railway power supply system using MMC-RPC[J]. Transactions of China Electrotechnical Society, 2017, 32(12): 108-116. [8] 徐殿国, 刘瑜超, 武健. 多端直流输电系统控制研究综述[J]. 电工技术学报, 2015, 30(17): 1-12. Xu Dianguo, Liu Yuchao, Wu Jian.Review on control strategies of multi-terminal direct current transmission system[J]. Transactions of China Electrotechnical Society, 2015, 30(17): 1-12. [9] 徐殿国, 李彬彬, 周少泽. 模块化多电平高压变频技术研究综述[J]. 电工技术学报, 2017, 32(20): 104-116. Xu Dianguo, Li Binbin, Zhou Shaoze.Overview of the modular multilevel converter based high voltage motor drive[J]. Transactions of China Electro- technical Society, 2017, 32(20): 104-116. [10] 胡海涛, 郑政, 何正友, 等. 交通能源互联网体系架构及关键技术[J]. 中国电机工程学报, 2018, 38(1): 12-24, 339. Hu Haitao, Zheng Zheng, He Zhengyo, et al.The framework and key technologies of traffic energy internet[J]. Proceedings of the CSEE, 2018, 38(1): 12-24, 339. [11] 王成山, 李微, 王议锋, 等. 直流微电网母线电压波动分类及抑制方法综述[J]. 中国电机工程学报, 2017, 37(1): 84-98. Wang Chengshan, Li Wei, Wang Yifeng, et al.DC bus voltage fluctuation classification and restraint methods review for DC microgrid[J]. Proceedings of the CSEE, 2017, 37(1): 84-98. [12] 李霞林, 郭力, 王成山, 等. 直流微电网关键技术研究综述[J]. 中国电机工程学报, 2016, 36(1): 2-17. Li Xialin, Guo Li, Wang Chengshan, et al.Key technologies of DC microgrids: an overview[J]. Proceedings of the CSEE, 2016, 36(1): 2-17. [13] 张海波, 袁志昌, 赵宇明, 等. VSC-MTDC系统变截距直流电压下垂控制策略[J]. 电力自动化设备, 2016, 36(10): 60-64. Zhang Haibo, Yuan Zhichang, Zhao Yuming, et al.Variable intercept DC-voltage droop control for VSC-MTDC system[J]. Electric Power Automation Equipmen, 2016, 36(10): 60-64. [14] Lu X, Guerrero J M, Sun K, et al.An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 1800-1812. [15] 丁荣军, 张志学, 李红波. 轨道交通能源互联网的思考[J]. 列车电传动, 2016(1): 1-5. Ding Rongjun, Zhang Zhixue, Li Hongbo.An overview on rail transit energy internet[J]. Electric Drive for Locomotives, 2016(1): 1-5. [16] 姚绪梁, 王旭, 冯泽文. 改善三相电压型PWM整流器动态性能的研究[J]. 电工技术学报, 2016, 31(增刊1): 169-175. Yao Xuliang, Wang Xu, Feng Zewen.Research on of improvement of the dynamic ability for PWM rectifier[J]. Transactions of China Electrotechnical Society, 2016, 31(S1): 169-175. [17] 徐进, 金逸, 胡从川, 等. 适用于海上风电并网的多端直流系统自适应下垂控制研究[J]. 电力系统保护与控制, 2018, 46(4): 78-85. Xu Jin, Jin Yi, Hu Congchuan, et al.DC voltage adaptive droop control of multi-terminal VSC-HVDC system for offshore wind farms integration[J]. Power System Protection and Control, 2018, 46(4): 78-85. [18] 麦倩屏, 陈鸣. 用于多微源低压微电网的虚拟阻抗反下垂控制[J]. 电力系统保护与控制, 2018, 46(1): 96-102. Mai Qianping, Chen Ming.P-V/Q-f droop control strategy with virtual impedance for low-voltage microgrid with multiple micro sources[J]. Power System Protection and Control, 2018, 46(1): 96-102. [19] Li Y, Tang G, Ge J, et al.Modeling and damping control of modular multilevel converter based DC grid[J]. IEEE Transactions on Power Systems, 2018, 33(1): 723-735. [20] 赵卓立, 杨苹, 郑成立, 等. 微电网动态稳定性研究述评[J]. 电工技术学报, 2017, 32(10): 111-122. Zhao Zhuoli, Yang Ping, Zheng Chengli, et al.Review on dynamic stability research of microgrid[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 111-122. [21] 李云丰, 汤广福, 贺之渊, 等. MMC型直流输电系统阻尼控制策略研究[J]. 中国电机工程学报, 2016, 36(20): 5492-5503. Li Yunfeng, Tang Guangfu, He Zhiyuan, et al.Damping control strategy research for MMC based HVDC system[J]. Proceedings of the CSEE, 2016, 36(20): 5492-5503. [22] Saad H, Dennetiere S, Mahseredjian J, et al.Modular multilevel converter models for electromagnetic transients[J]. IEEE Transactions on Power Delivery, 2014, 29(3): 1481-1489. [23] 伍文华, 陈燕东, 罗安, 等. 一种直流微网双向并网变换器虚拟惯性控制策略[J]. 中国电机工程学报, 2017, 37(2): 360-372. Wu Wenhua, Chen Yandong, Luo An, et al.A virtual inertia control strategy for bidirectional grid- connected converters in DC micro-grids[J]. Pro- ceedings of the CSEE, 2017, 37(2): 360-372. [24] 张学, 裴玮, 邓卫, 等. 含恒功率负载的交直流混联配电系统稳定性分析[J]. 中国电机工程学报, 2017, 37(19): 5572-5582, 5834. Zhang Xue, Pei Wei, Deng Wei, et al.Stability analysis of AC/DC hybrid distribution system with constant power loads[J]. Proceedings of the CSEE, 2017, 37(19): 5572-5582, 5834. [25] Sannino A, Postiglione G, Bollen M H, et al.Feasibility of a DC network for commercial facilities[J]. IEEE Transactions on Industry Applications, 2003, 39(5): 1499-1507. |
|
|
|