|
|
Single-Ended Traveling-Wave-Based Fault Location Algorithm for Hybrid Transmission Line Based on the Full-Waveform |
Deng Feng1,2, Li Xinran1, Zeng Xiangjun2 |
1. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 2. College of Electrical and Information Engineering Changsha University of Science & Technology Changsha 410114 China; |
|
|
Abstract In transmission lines composed of multi-sectional overhead lines and underground cables, due to the difference between traveling wave velocities in overhead line and underground cable, the traditional traveling wave-based fault location algorithm for uniform transmission line is not suitable. Based on the transmission characteristics and the refraction and reflection mechanism of traveling wave, the traveling waveform similarity and difference in the time-frequency domain between the faults occur within section and at adjacent sections are qualitatively analyzed. On this basis, the full-waveform representation of the traveling wave in the time-frequency domains is proposed, and then the one-to-one correspondence relationship between the full-waveform and the fault location is revealed. Extracting the full-waveform within a certain time window, all frequency band coefficients can be obtained by CWT, and then they were divided into small time-frequency pieces which had the same frequency bandwidth and time interval. The time-frequency spectrum matrix was built, and the accurate fault position can be calculated by using the waveform matching technology. The proposed method has clearly physical meaning, which can be used both in hybrid and uniform transmission lines. There is no need to use the modal component velocities, the initial traveling wave-front arrival times and its subsequent reflection waveforms. Extensive simulations under different conditions verify the wide applicability and high accuracy of the proposed algorithm.
|
Received: 05 December 2017
Published: 14 August 2018
|
|
|
|
|
[1] 许飞, 董新洲, 王宾, 等. 考虑二次回路暂态传变特性的单端组合测距算法及其应用[J]. 中国电机工程学报, 2015, 35(20): 5210-5219. Xu Fei, Dong Xinzhou, Wang Bin, et al.Single-ended assembled fault location method and application considering secondary circuit transfer characteristics[J]. Proceedings of the CSEE, 2015, 35(20): 5210-5219. [2] 邓丰, 曾祥君, 马士聪, 等. 基于分布式行波检测的广域网络故障定位方法[J]. 电网技术, 2017, 41(4): 1300-1306. Deng Feng, Zeng Xiangjun, Ma Shicong, et al.Research on wide area traveling wave fault location method based on distributed traveling wave detection[J]. Power System Technology, 2017, 41(4): 1300-1306. [3] Mahamedi B, Sanaya-Pasand M, Azizi S, et al.Unsynchronised fault location technique for three-terminal lines[J]. IET Generation Transmission & Distribution, 2015, 15(9): 2099-2107. [4] Nanayakkara O M K K, Rajapakse A D, Wachal R. Location of DC line faults in conventional HVDC systems with segments of cables and overhead lines using terminal measurements[J]. IEEE Transactions on Power Delivery, 2012, 27(1): 279-288. [5] Korkali M, Lev-Ari H, Abur A.Traveling-wave-based fault location technique for transmission grids via wide-area synchronized voltage measurements[J]. IEEE Transactions on Power Systems, 2012, 27(2): 1003-1011. [6] 邓丰, 李欣然, 曾祥君, 等. 基于波形唯一和时-频特征匹配的单端行波保护和故障定位方法[J]. 中国电机工程学报, 2018, 38(5): 1475-1487. Deng Feng, Li Xinran, Zeng Xiangjun, et al.Research on single-end traveling wave based protection and fault location method based on waveform uniqueness and feature matching in the time and frequency domain[J]. Proceedings of the CSEE, 2018, 38(5): 1475-1487. [7] 何连杰, 史常凯, 闫卓, 等. 基于广义S变换能量相对熵的小电流接地系统故障区段定位方法[J]. 电工技术学报, 2017, 32(8): 274-280. He Lianjie, Shi Changkai, Yan Zhuo, et al.A fault section location method for small current neutral grounding system based on energy relative entropy of generalized S-transform[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 274-280. [8] 梁睿, 杨学君, 薛雪, 等. 零序分布参数的单相接地故障精确定位研究[J]. 电工技术学报, 2015, 30(12): 472-479. Liang Rui, Yang Xuejun, Xue Xue, et al.Study of accurate single-phase grounding fault location based distributed parameter theory using data of zero sequence components[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 472-479. [9] Dommel H W.Electromagnetic transient program: reference manual: EMTP theory book[M]. Portland: Bonnevolle Power Administration, 1986. [10] 于玉泽, 贾剑, 李功新, 等. 电缆-架空线混合线路故障测距方法综述[J].电网技术, 2006, 30(17): 64-69. Yu Yuze, Jia Jian, Li Gongxin, et al.A survey on fault location methods for hybrid transmission lines consisting of power cables and overhead lines[J]. Power System Technology, 2006, 30(17): 64-69 [11] 刘晓琴, 王大志, 江雪晨, 等. 利用行波到达时差关系的配电网故障定位算法[J]. 中国电机工程学报, 2017, 37(14): 4009-4115. Liu Xiaoqin, Wang Dazhi, Jiang Xuechen, et al.Fault location algorithm for distribution power network based on relationship in time difference of arrival of traveling wave[J]. Proceedings of the CSEE, 2017, 37(14): 4009-4115. [12] 季涛, 孙景同, 徐丙垠, 等. 配电混合线路双端行波故障测距技术[J]. 中国电机工程学报, 2006, 26(12): 89-94. Ji Tao, Sun Jingtong, Xu Bingyin, et al.The double-end traveling wave fault location technology of distribution hybrid circuit[J]. Proceedings of the CSEE, 2006, 26(12): 89-94. [13] 姜宪国, 李博通, 张云柯, 等. 基于电压序量变化量的超高压混合线路故障测距方法[J]. 电网技术, 2015, 39(12): 3578-3583. Jiang Xianguo, Li Botong, Zhang Yunke, et al.A fault location method for extra-high voltage mixed lines based on variation of sequence voltage[J]. Power System Technology, 2015, 39(12): 3578-3583. [14] 黄震, 江泰廷, 张维锡, 等. 基于双端行波原理的高压架空线-电缆混合线路故障定位方法[[J]. 电力系统自动化, 2010, 34(14): 88-91. Huang Zhen, Jiang Taiting, Zhang Weixi, et al.Fault location method of high voltage overhead lines-cable hybrid line based on double-end traveling wave principle[J]. Automation of Electric Power Systems, 2010, 34(14): 88-91. [15] 薛永端, 李乐, 俞恩科, 等. 基于分段补偿原理的电缆架空线混合线路双端行波故障测距算法[J]. 电网技术, 2014, 38(7): 1953-1958. Xue Yongduan, Li Le, Yu Enke, et al.A sectionalized compensation based two-terminal traveling wave fault location algorithm for hybrid transmission line composed of power cable and overhead line[J]. Power System Technology, 2014, 38(7): 1953-1958. [16] Livani H, Evrenosoglu C Y.A machine learning and wavelet-based fault location method for hybrid transmission lines[J]. IEEE Transactions on Smart Grid, 2014, 5(1): 51-59. [17] Reza J H, Livani H.Traveling-wave-based fault-location algorithm for hybrid multiterminal circuits[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 135-144. [18] 何正友. 小波分析在电力系统暂态信号处理中的应用[M]. 北京: 中国电力出版社, 2011 [19] Ajinkya K, Leeuwen T V, Wim A M S. Reconstruction in full-waveform inversion with a parametric level-set method[J]. IEEE Transactions on Computational Imaging, 2017, 3(2): 305-315. [20] 葛耀中. 新型继电保护和故障测距的原理与技术[M]. 2版. 西安: 西安交通大学出版社, 2007. [21] 哈恒旭, 张保会, 吕志来. 边界保护的理论基础第二部分: 线路边界的折、反射系数的频谱[J]. 继电器, 2002, 30(10): 1-5. Ha Hengxu, Zhang Baohui, Lü Zhilai.The spectrum analysis of fault transient for transmission lines part II: spectrum of reflection and refraction coefficient[J]. Relay, 2002, 30(10): 1-5. [22] 张殿生. 电力工程高压送电线路设计手册[M]. 2版. 北京: 中国电力出版社, 2003. [23] 符玲, 何正友, 麦瑞坤, 等. 小波熵证据的信息融合在电力系统故障诊断中的应用[J]. 中国电机工程学报, 2008, 28(13): 64-69. Fu Ling, He Zhengyou, Mai Ruikun, et al.Information fusion method of entropy evidences and its application to fault diagnosis in power system[J]. Proceedings of the CSEE, 2008, 28(13): 64-69. [24] 郭谋发, 刘世丹, 杨耿杰. 利用时频谱相似度识别的配电线路接地选线方法[J]. 中国电机工程学报, 2013, 33(19): 183-191. Guo Moufa, Liu Shidan, Yang Gengjie.A novel approach to detect fault lines in distribution network using similarity recognition based on time-frequency spectrum[J]. Proceedings of the CSEE, 2013, 33(19): 183-191. [25] Zhuo Chao, Ni Yanru, Zeng Xiangjun, et al.Dynamic simualtion test for traveling wave fault location system in distribution network[C]//2017 China International Electrical and Energy Conference, Beijing, 2017: 628-632. [26] 向运琨. 新型输电网故障行波定位系统与应用技术研究[D]. 长沙: 长沙理工大学, 2017. [27] 段建东, 张保会, 周艺. 利用电流行波进行超高压输电线路故障类型识别的研究[J]. 中国电机工程学报, 2005, 25(7): 58-63. Duan Jiandong, Zhang Baohui, Zhou Yi.Study of fault-type identification using current traveling-wave in extra-high-voltage transmission lines[J]. Proceedings of the CSEE, 2005, 25(7): 58-63. [28] 赵智大. 高电压技术[M]. 3版. 北京: 中国电力出版社, 2013. [29] 唐金锐, 尹项根, 张哲, 等. 零模检测波速度的迭代提取及其在配电网单相接地故障定位中的应用[J]. 电工技术学报, 2013, 28(4): 202-210. Tang Jinrui, Yin Xianggen, Zhang Zhe, et al.Iterative extraction of detected zero-mode wave velocity and its application in single phase-to-ground fault location in distribution networks[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 202-210. [30] 吴刚, 林湘宁. 通用行波测距修正方法[J]. 中国电机工程学报, 2011, 31(34): 142-149. Wu Gang, Lin Xiangning.Generalized amending method on fault location algorithm based on traveling waves[J]. Proceedings of the CSEE, 2011, 31(34): 142-149. [31] 束洪春, 曹璞璘, 杨竞及, 等. 考虑互感器传变特性的输电线路暂态保护雷击干扰与线路故障识别方法[J]. 电工技术学报, 2015, 30(3): 1-12. Shu Hongchun, Cao Pulin, Yang Jingji, et al.A method to distinguish between fault and lightning disturbance on transmission lines based on CVT secondary voltage and CT secondary current[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 1-12. [32] 高艳丰, 朱永利, 闫红艳, 等. 基于VMD和TEO的高压输电线路雷击故障测距研究[J]. 电工技术学报, 2016, 31(3): 24-33. Gan Yanfeng, Zhu Yongli, Yan Hongyan, et al.Study on lighting fault locating of high-voltage transmission lines based on VMD and TEO[J]. Transactions of China Electrotechnical Society, 2016, 31(3): 24-33. [33] 席燕辉, 彭辉. 迭代扩展卡尔曼辅助粒子滤波及算法性能分析[J]. 系统工程学报, 2012, 27(7): 593-599. Xi Yanhui, Peng Hui.Iterated extended Kalman auxiliary particle filter and analysis of algorithm' performance[J]. Journal of System Engineering, 2012, 27(7): 593-599. [34] 潘海鸿, 吕治强, 李君子, 等. 基于灰色扩展卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报, 2017, 32(21): 1-8. Pan Haihong, Lü Zhiqiang, Li Junzi, et al.Estimation of lithium-ion battery state of charge based on grey prediction model-extended Kalman filter[J]. Transactions of China Electrotechnical Society, 2017, 32(21): 1-8. |
|
|
|