|
|
Discharge Transitions of Parallel Dielectric Barrier in Atmospheric Pressure Helium |
Hao Yanpeng1, Han Yuying1, Huang Zhiming2, Yang Lin1, Li Licheng1 |
1. School of Electric Power South China University of Technology Guangzhou 510640 China; 2. Electric Power Research Institute China Southern Power Grid Co. Ltd Guangzhou 510663 China |
|
|
Abstract Transitions of filamentary discharges, columnar discharges, partial diffuse discharges, or diffuse discharges covering the whole electrodes, and methods to distinguish filamentary discharges from columnar discharges were investigated based on the measurements of loop currents and light emissions. It was found that the discharge could be sustained when the applied discharge was adjusted to a lower one below the discharge inception voltage. In the case of a background air pressure of 40 Pa, in a 3 mm gas gap, at the frequencies of 10 kHz, 11.4 kHz or 14 kHz, a diffuse glow discharge covering the whole electrode initiated. With the discharge sustain voltage increasing from the lowest to the discharge inception voltage, transitions from a partial diffuse, a columnar to a diffuse discharge covering the whole electrodes occurred. While in the case of a background air pressure of 20 Pa, in a 3 mm gas gap, at the frequencies of 10 kHz, 12 kHz or 14 kHz, a diffuse glow discharge covering the whole electrode initiated. With the discharge sustain voltage increasing from the lowest to the discharge inception voltage, a transition from a columnar to a diffuse discharge covering the whole electrodes occurred. While a columnar discharge was generated at the discharge inception voltage with a background air pressure of 20 Pa, in a 2 mm gas gap, at the frequency of 18 kHz. And with the discharge sustain voltage increasing from the lowest to ones exceeding the discharge inception voltage, transitions from filamentary, columnar to diffuse discharges covering the whole area of electrodes occurred. Many small burrs on the current curve, no Townsend breakdowns, nor microdischarges that do not take place at the same locations could be used to distinguish the filamentary discharge.
|
Received: 10 May 2017
Published: 12 July 2018
|
|
|
|
|
[1] 张仲麟, 聂秋月, 王志斌, 等. 大气压介质阻挡放电双频调制技术数值模拟研究[J]. 电工技术学报, 2017, 32(8): 48-54. Zhang Zhonglin, Nie Qiuyue, Wang Zhibin, et al.Numerical studies on the modulated strategy of atmospheric pressure dielectric barrier discharge plasmas driven by dual-frequency[J]. Transactions of China Electrotechnical Society, 2017, 32(8): 48-54. [2] 高远, 张帅, 刘峰. 脉冲介质阻挡放电等离子体催化CH4直接转换[J]. 电工技术学报, 2017, 32(2): 61-69. Gao Yuan, Zhang Shuai, Liu Feng.Plasma enhanced CH4 direct conversion in pulsed dielectric barrier discharges[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 61-69. [3] Kogelschatz U.Filamentary, patterned, and diffuse barrier discharges[J]. IEEE Transactions on Plasma Science, 2002, 30(4): 1400-1408. [4] Gouda G, Massines F.Role of excited species in dielectric barrier discharge mechanisms observed in helium at atmospheric pressure[C]//1999 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 1999, 2: 496-499. [5] Tay W H, Yap S L, Wong C S.Electrical characteristics and modeling of a filamentary dielectric barrier discharge in atmospheric air[J]. Sains Malaysiana, 2014, 43(4): 583-594. [6] Ráhel' J, Sherman D M. The transition from a filamentary dielectric barrier discharge to a diffuse barrier discharge in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2005, 38(4): 547-554. [7] Golubovskii Y B, Maiorov V A, Behnke J, et al.Modelling of the homogeneous barrier discharge in helium at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 2003, 36(1): 39-49. [8] 王新新, 李成榕. 大气压氮气介质阻挡均匀放电[J]. 高电压技术, 2011, 37(6): 1405-1415. Wang Xinxin, Li Chengrong.Review of homogenous barrier discharge in Nitrogen at atmosphere pressure[J]. High Voltage Engineering, 2011, 37(6): 1405-1415. [9] Massines F, Gherardi N, Naudé N, et al.Glow and Townsend dielectric barrier discharge in various atmosphere[J]. Plasma Physics & Controlled Fusion, 2005, 47(12B): B577-B588. [10] 王艳辉, 王德真. 大气压下多脉冲均匀介质阻挡放电的研究[J]. 物理学报, 2005, 54(3): 1295-1300. Wang Yanhui, Wang Dezhen.Study on homogeneous multiple pulse barrier discharge at atmospheric pressure[J]. Acta Physica Sinica, 2005, 54(3): 1295-1300. [11] 郝艳捧, 王晓蕾, 阳林. 大气压氦气介质阻挡多脉冲均匀放电的形成条件[J]. 电工技术学报, 2009, 24(9): 28-32. Hao Yanpeng, Wang Xiaolei, Yang Lin.Formation of dielectric barrier multi-pulse glow discharges in Helium at atmospheric pressure[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 28-32. [12] 郝艳捧, 阳林, 王晓蕾. 含空气杂质大气压氦气介质阻挡放电中彭宁电离作用[J]. 电工技术学报, 2009, 24(8): 22-26. Hao Yanpeng, Yang Lin, Wang Xiaolei.Investigation of penning ionization in atmospheric helium dielectric barrier discharges with air impurity[J]. Transactions of China Electrotechnical Society, 2009, 24(8): 22-26. [13] Massines F, Rabehi A, Decomps P, et al.Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier[J]. Journal of Applied Physics, 1998, 83(6): 2950-2957. [14] 冉俊霞, 罗海云, 王新新. 大气压氖气介质阻挡放电研究[J]. 高电压技术, 2011, 37(6): 1486-1492. Ran Junxia, Luo Haiyun, Wang Xinxin.Investigation on dielectric barrier discharge in neon at atmosphere pressure[J]. High Voltage Engineering, 2011, 37(6): 1486-1492. [15] Kanazawa S, Kogoma M, Moriwaki T, et al.Stable glow plasma at atmospheric pressure[J]. Journal of Physics D Applied Physics, 1988, 21(5): 838-840. [16] Boyers D G, Tiller W A.Plasma bubble domains: A magnetic bubble analog[J]. Applied Physics Letters, 1982, 41(1): 28-31. [17] Ammelt E, Schweng D, Purwins H G.Spatio-temporal pattern formation in a lateral high-frequency glow discharge system[J]. Physics Letters A, 1993, 179(4-5): 348-354. [18] Dong Lifang, Fan Weili, He Yafeng, et al.Self-organized gas-discharge patterns in a dielectric-barrier discharge system[J]. IEEE Transactions on Plasma Science, 2008, 36(4): 1356-1357. [19] Radu I, Bartnikas R, Czeremuszkin G, et al.Diagnostics of dielectric barrier discharges in noble gases: atmospheric pressure glow and pseudoglow discharges and spatio-temporal patterns[J]. IEEE Transactions on Plasma Science, 2003, 31(3): 411-421. [20] Dong Lifang, Liu Fucheng, Liu Shuhua, et al.Observation of spiral pattern and spiral defect chaos in dielectric barrier discharge in argon/air at atmospheric pressure[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 72(4): 046215. [21] 董丽芳, 朱平, 杨京, 等. 介质阻挡放电复杂同心圆环斑图的研究[J]. 高电压技术, 2015, 41(9): 2856-2861. Dong Lifang, Zhu Ping, Yang Jing, et al.Study of complex concentric-ring pattern in dielectric barrier Discharge[J]. High Voltage Engineering, 2015, 41(9): 2856-2861. [22] Fu Hongyan, Dong Lifang, Zhao Yang, et al.Spot-halo hexagon pattern in dielectric barrier discharge[J]. Journal of the Physical Society of Japan, 2015, 84(4): 044501. [23] Callegari T, Blanco S, Fournier R, et al.Hexagonal and honeycomb structures in dielectric barrier discharges[J]. European Physical Journal Applied Physics, 2009, 47(2): 1-4. [24] 罗海云, 冉俊霞, 王新新. 大气压不同惰性气体介质阻挡放电特性的比较[J]. 高电压技术, 2012, 38(5): 1070-1077. Luo Haiyun, Ran Junxia, Wang Xinxin.Comparision study of dielectric barrier discharge in inert gases at atmosphere pressure[J]. High Voltage Engineering, 2012, 38(5): 1070-1077. [25] Shirafuji T, Kitagawa T, Wakai T, et al.Observation of self-organized filaments in a dielectric barrier discharge of Ar gas[J]. Applied Physics Letters, 2003, 83(12): 2309-2311. [26] 涂恩来. 大气压氦气多脉冲介质阻挡放电模式与演化过程研究[D]. 广州:华南理工大学, 2011. [27] 郝艳捧, 郑彬, 刘耀阁. 大气压氦气介质阻挡斑图放电与辉光放电的转换条件及其演化过程[J]. 高电压技术, 2012, 38(7): 1568-1575. Hao Yanpeng, Zheng Bin, Liu Yaoge.Conversion and evolution process of patterned discharges to glow discharges in atmospheric-pressure helium dielectric barrier discharge[J]. High Voltage Engineering, 2012, 38(7): 1568-1575. [28] Huang Zhiming, Hao Yanpeng, Yang Lin, et al.Two-dimensional simulation of spatiotemporal generation of dielectric barrier columnar discharges in atmospheric helium[J]. Physics of Plasmas, 2015, 22(12): 123509. [29] Stauss S, Muneoka H, Ebato N, et al.Self-organized pattern formation in helium dielectric barrier discharge cryoplasmas[J]. Plasma Sources Science & Technology, 2013, 22(22): 025021. [30] Gherardi N, Massines F.Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen[J]. IEEE Transactions on Plasma Science, 2001, 29(3): 536-544. [31] Fang Z, Lin J, Xie X, et al.Experimental study on the transition of the discharge modes in air dielectric barrier discharge[J]. Journal of Physics D: Applied Physics, 2009, 42(8): 085203. [32] 韩育宏, 贾鹏英, 鲍文婷, 等. 微间隙大气压空气介质阻挡放电模式的转换[J]. 高电压技术, 2015, 41(2): 572-577. Han Yuhong, Jia Pengying, Bao Wenting, et al.Discharge mode transition of dielectric barrier discharge in micro-size air gap at atmospheric pressure[J]. High Voltage Engineering, 2015, 41(2): 572-577. [33] Liu Fucheng, He Yafeng, Dong Lifang.Simulation of stationary glow patterns in dielectric barrier discharges at atmospheric pressure[J]. Physics of Plasmas, 2014, 21(12): 123503. [34] Hao Yanpeng, Zheng Bin, Liu Yaoge.Columnar discharge mode between parallel dielectric barrier electrodes in atmospheric pressure helium[J]. Physics of Plasmas, 2014, 21(1): 1-5. [35] Belinger A, Naude? N, Gherardi N. Adding of nitrogen in helium DBD: consequences on the self-organization of the discharge[J]. IEEE Transactions on Plasma Science, 2014, 42(10): 2816-2817. [36] 郝艳捧, 阳林, 涂恩来, 等. 实验研究大气压多脉冲辉光放电的模式和机理[J]. 物理学报, 2010, 59(4): 2610-2616. Hao Yanpeng, Yang Lin, Tu Enlai, et al.Experimental study on mode and mechanism of multi-pulse atmospheric-pressure glow discharges[J]. Acta Physica Sinica, 2010, 59(4): 2610-2616. [37] Luo Haiyun, Liang Zhuo, Lü Bo, et al.Radial evolution of dielectric barrier glowlike discharge in helium at atmospheric pressure[J]. Applied Physics Letters, 2008, 91(23): 231504. |
|
|
|