|
|
High Voltage Circuit Breaker Fault Diagnosis Based on Neural Fuzzy Petri Nets |
Cheng Xuezhen1,2, Zhu Xiaolin1,2, Du Yanbin1,2, Wang Cheng1,3, Cao Maoyong1,2 |
1. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology Shandong University of Science and Technology Qingdao 266590 China; 2.College of Electrical Engineering and Automation Shandong University of Science and Technology Qingdao 266590 China; 3. State Grid Shandong Electric Power Company Rizhao Power Supply Company Rizhao 276800 China |
|
|
Abstract In order to improve the stability of high voltage circuit breaker, this paper evaluates and diagnoses the state of high voltage circuit breaker by Petri net theory, for its powerful knowledge expression and logic inference function. According to the logic relationship of the circuit breaker, a fault diagnosis model of high voltage circuit breaker based on Petri is constructed; The failure mode and effect analysis(FMEA) method is used to deal with the fault statistics, and the credibility of place,threshold of transition, weight of place and credibility of transition; Optimize the forward inference algorithm to achieve accurate prediction of high voltage circuit breaker failure; Inverse inference combined with the minimum cut set can effectively avoid the blindness of maintenance. Finally, the part of model is used to deduce and analyze,the correctness and rationality of the reasoning model are verified by the fault tree and the data of statistics.
|
Received: 28 April 2017
Published: 13 June 2018
|
|
|
|
|
[1] 孙来军,胡晓光,纪延超. 改进的小波包-特征熵在高压断路器故障诊断中的应用[J]. 中国电机工程学报,2007,27(12):103-108. Sun Laijun, Hu Xiaoguang, JiYanchao. Fault diagnosis for high voltage circuit breakers with improved characteristic entropy of wavelet packet[J]. Proceedings of the CSEE, 2007,27(12):103-108. [2] 程序, 关永刚, 张文鹏, 等. 基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J]. 电工技术学报, 2014, 29(7): 209-215. Cheng Xu, Guan Yonggang, Zhang Wenpeng, et al.Diagnosis method on the mechanical failure of high voltage circuit breakers based on factor analysis and SVM[J]. Transactions of China Electrotechnical Society, 2014, 29(7): 209-215. [3] 罗小安. 基于径向基神经网络的高压断路器故障诊断应用研究[D].成都:西南交通大学,2007. [4] 黄敏,林啸,侯志文. 模糊故障Petri网建模方法及其应用[J].中南大学学报(自然科学版),2013, 44(1):208-215. Huang Min, Lin Xiao, HouZhiwen. Modeling method of fuzzy fault Petri nets and its application[J].Journal of Central South University (Science and Technology),2013,44(1):208-215. [5] Zhang Yan,Zhang Yong,Wen Fushuan,et al.A fuzzy Petri net based approach for fault diagnosis in power systems considering temporal constraints[J]. International Journal of Electrical Power and Energy Systems, 2016,78: 215-224. [6] Gao M, Zhou M C.Fuzzy reasoning Petri nets for demanufacturing process decision on electronics and environment[C]//Proceedings of the 2001 IEEE International Symposium on Electronics and the Environment, Denver, CO, USA, 2001: 167-172. [7] Brent R P.Fast training algorithms for multilayer neural nets neural Networks[C]//IEEE Transactions on Neural Networks, 1991, 2(3): 346-354. [8] Li Xiaoou, Wen Yu, Lara-Rosano F.Dynamic knowledge inference and learning under adaptive fuzzy Petri net frame work[C]//IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 2000, 30(4): 442-450. [9] Ruiz-Beltran E, Lopez-Mellado E, Ramirez-Trevino A, et al.Fault diagnosis based on Petri net reduced models[C]//2006 3rd International Conference on Electrical and Electronics Engineering, Veracruz, Mexico, 2006: 1-5. [10] Cabasino M P, Giua A, Hadjicosts C N, et al.Fault model identification with Petri nets[C]//Proceedings of the 9th International Workshop on Discrete Event Systems, Goteborg, Sweden, 2008: 455-461. [11] Sun Jing, Qin Shiyin, Song Yonghua.Fault diagnosis of electric power systems based on fuzzy Petri nets[J]. IEEE Transactions on Power Systems, 2004, 19(4): 2053-2059. [12] LuoXu,Kezunovic M. Implementing fuzzy reasoning Petri-nets for fault section estimation[J]. IEEE Transactions on Power Delivery, 2008, 23(2): 676-685. [13] WangLei, Chen Qing, GaoZhanjun, et al. Knowledge representation and general Petri net models for power grid fault diagnosis[J]. IET Generation, Transmission & Distribution, 2015, 9(9):866-873. [14] He Z Y, Yang J W, Zeng QF, et al.Fault section estimation for power systems based on adaptive fuzzy Petri nets[J].International Journal of Computational Intelligence Systems, 2014, 7(4): 605-614. [15] 程学珍, 陈强, 于永进, 等. 基于最大似然译码字的Petri网电网故障诊断方法[J]. 电工技术学报, 2015, 30(15): 46-52. Cheng Xuezhen, Chen Qiang, Yu Yongjin, et al.A fault diagnosis approach of power networks based on maximum likelihood decoding Petri net models[J]. Transactions of China Electrotechnical Society, 2015, 30(15): 46-52. [16] 陈强, 程学珍, 刘建航, 等. 基于分层变迁的WFPN电网故障分析[J]. 电工技术学报, 2016, 31(15): 125-135. Chen Qiang, Cheng Xuezhen, Liu Jianhang, et al.The analysis method of power grid fault based on hierarchical transition weighted fuzzy petri net[J]. Transactions of China Electrotechnical Society, 2016, 31(15): 125-135. [17] 程学珍, 王程, 于永进, 等. 一种基于模糊故障Petri网的三相异步电动机故障分析方法[J]. 电工技术学报,2015, 30(17):132-139. Cheng Xuezhen, Wang Cheng, Yu Yongjin, et al.An approach for three-phase asynchronous motor failure analysis based on fuzzy fault petri net[J]. Transactions of China Electrotechnical Society, 2015, 30(17):132-139. [18] Edwards CJ, Davidson EM, McArthur SDJ, et al. Flexible model-based alarm processing for protection performance assessment and incident identification. IEEE Transactions on Power Systems, 2013, 28(3):2584-2591. [19] 谢倩, 乐晓波, 周恺卿, 等. 模糊Petri网库所集中token初始值的确定方法[J]. 计算机工程与应用, 2012, 48(12):49-52, 62. XieQian, YueXiaobo, Zhou Kaiqing, et al. Determination of token in initial place of fuzzy Petri nets[J].Computer Engineering and Application,2012,48(12): 49-52, 62. [20] 荣亚君,葛葆华,赵杰,等. 用粗糙集理论和贝叶斯网络诊断SF_6断路器故障[J]. 高电压技术,2009,35(12):2995-2999. RongYajun, GeBaohua, Zhao Jie, et al. Fault diagnosis of SF6circuit breaker using rough set theoryand Bayesian Network[J].High Voltage Engineering,2009,35(12):2995-2999. [21] 张耀天, 何正友, 赵静, 等. 基于粗糙集理论和朴素贝叶斯网络的电网故障诊断方法[J].电网技术,2007,31(1):27-43. Zhang Yaotian, He Zhengyou, Zhao Jing, et al.A power network fault diagnosis method based on rough set theory and naive bayesiannetworks[J]. Power System Technology, 2007, 31(1): 27-43. [22] 李练兵, 张秀云, 王志华, 等. 故障树和BAM神经网络在光伏并网故障诊断中的应用[J]. 电工技术学报, 2015, 30(2): 248-254. Li Lianbing, Zhang Xiuyun, Wang Zhihua, et al.Fault diagnosis in solar photovoltaic grid-connected power system based on fault tree and BAM neural network[J]. Transactions of China Electrotechnical Society, 2015, 30(2): 248-254. [23] Renganathan K, Bhaskar V.An observer based approach for achieving fault diagnosis and fault tolerant control of systems modeled as hybrid Petri nets[J]. ISA Transactions, 2011, 50(3): 443-453. [24] 刘久富, 孙燕, 于杰, 等. 火箭发动机启动过程的部分可观Petri网故障诊断[J]. 哈尔滨工业大学学报, 2017, 49(3): 1-8. Liu Jiufu, Sun Yan, Yu Jie, et al.Faultdiagnosis of rocket engine start-up process with partially observed Petri nets[J].Journal of Harbin Institute of Technology,2017, 49(3): 1-8. [25] Cabasino M P, Giua A, Seatzu C.Diagnosis using labeled Petri nets with silent or undistinguishable fault events[J]. IEEE Transactions on System, Man and Cybernetics, 2013, 43(2): 345-355. [26] 杨凌霄, 朱亚丽. 基于概率神经网络的高压断路器故障诊断[J]. 电力系统保护与控制, 2015, 43(10): 62-67. Yang Lingxiao, Zhu Yali.High voltage circuit breaker fault diagnosis of probabilistic neural network[J]. Power System Protection and Control, 2015, 43(10): 62-67. |
|
|
|