[1] Chen Qiuhui, Huang N, Riemenschneider S, et al.A B-spline approach for empirical mode decompositions[J]. Advances in Computational Mathematics, 2006, 24(1): 171-195.
[2] 胡劲松, 杨世锡. 基于有效数据的经验模态分解快速算法研究[J]. 振动、测试与诊断, 2006, 26(2): 119-121.
Hu Jinsong, Yang Shixi.Study on valid-data-based EMD fast algorithm[J]. Journal of Vibration, Measurement & Diagnosis, 2006, 26(2): 119-121.
[3] Qin Yi, Qin Shuren, Mao Yongfang.Fast implementation of orthogonal empirical mode decomposition and its applica-tion into harmonic detection[J]. Chinese Journal of Mechanical Engineering, 2008, 21(2): 93-98.
[4] Guo Wei, Tse P W.A novel signal compression method based on optimal ensemble empirical mode decomposition for bearing vibration signals[J]. Journal of Sound and Vibration, 2013, 332(2): 423-441.
[5] Chen Dan, Li Duan, Xiong Muzhou, et al.GPGPU-aided ensemble empirical-mode decomposition for EEG analysis during anesthesia[J]. IEEE Transactions on Information Technology In Biomedicine, 2010, 14(6): 1417-1427.
[6] Wang Y, Ren H, Huang M, et al.GPU-based ensemble empirical mode decomposition approach to spectrum discrimination[C]//Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Shanghai, China, 2012:1-4.
[7] 朱永利, 李莉, 宋亚奇, 等. ODPS平台下的电力设备监测大数据存储与并行处理方法[J]. 电工技术学报, 2017, 32(9): 199-210.
Zhu Yongli, LiLi, Song Yaqi, et al. Storage and parallel processing of big data of power equipment condition monitoring on ODPS platform[J]. Transactions of China Electrotechnical Society, 2017, 32(9): 199-210.
[8] Wang Lizhe, Chen Dan, Ranjan R, et al.Parallel processing of massive EEG data with MapReduce[C]//IEEE International Conference on Parallel and Distributed Systems, Singapore, 2012: 164-171.
[9] 宋亚奇, 周国亮, 朱永利, 等. 云平台下并行总体经验模态分解局部放电信号去噪方法[J]. 电工技术学报, 2015, 30(18): 213-222.
Song Yaqi, Zhou Guoliang, Zhu Yongli, et al.Research on parallel ensemble empirical mode decomposition denoising method for partial discharge signals based on cloud platform[J]. Transactions of China Electrotechnical Society, 2015, 30(18): 213-222.
[10] 李明, 李天瑞, 陈志, 等. 基于Spark计算框架的高铁振动数据经验模态分解[J]. 计算机工程与应用, 2016, 52(20): 103-107, 176.
Li Ming, Li Tianrui, Chen Zhi, et al.Empirical mode decomposition of high-speed rail data based on Spark computing framework[J]. Computer Engineering and Applications, 2016, 52(20): 103-107, 176.
[11] Huang N E, Shen Zheng, Long S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[12] Wu Zhaohua, Huang N E.Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[13] Zaharia M, Chowdhury M, Das T, et al.Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing[C]// Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, San Jose, CA, USA, 2012: 141-146.
[14] 孟建良, 刘德超. 一种基于Spark和聚类分析的辨识电力系统不良数据新方法[J]. 电力系统保护与控制, 2016, 44(3): 85-91.
Meng Jianliang, Liu Dechao.A new method for identifying bad data of power system based on Spark and clustering analysis[J]. Power System Protection and Control, 2016, 44(3): 85-91.
[15] 陈伟根, 龙震泽, 谢波, 等. 不同气隙尺寸的油纸绝缘气隙放电特征及发展阶段识别[J]. 电工技术学报, 2016, 31(10): 49-58.
Chen Weigen, Long Zhenze, Xie Bo, et al.Characteristics and development stage recognition of air-gap discharge within oil-paper insulation considering effect of cavity size[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 49-58.
[16] 季洪鑫, 李成榕, 马国明, 等. 冲击电压下气体绝缘开关设备悬浮缺陷放电特征[J]. 电工技术学报, 2017, 32(6): 256-264.
JiHongxin, Li Chengrong, Ma Guoming, et al. Characteristic analysis of gas insulated switchgear suspension defect under impulse voltage[J]. Transactionsof China Electrotechnical Society, 2017, 32(6): 256-264.
[17] 朱永利, 贾亚飞, 王刘旺, 等. 基于改进变分模态分解和Hilbert变换的变压器局部放电信号特征提取及分类[J]. 电工技术学报, 2017, 32(9): 221-235.
Zhu Yongli, JiaYafei, Wang Liuwang, et al. Feature extraction and classification on partial discharge signals of power transformers based on improved variational mode decomposition and Hilbert transform[J]. Transactions of China Electrotechnical Society, 2017, 32(9):221-235.
[18] 贾亚飞, 朱永利, 王刘旺, 等. 基于VMD和多尺度熵的变压器内绝缘局部放电信号特征提取及分类[J]. 电工技术学报, 2016, 31(19): 208-217.
Jia Yafei, Zhu Yongli, Wang Liuwang, et al.Feature extraction and classification on partial discharge signals of power transformers based on VMD and multiscale entropy[J]. Transactions of China Electrotechnical Society, 2016, 31(19): 208-217.
[19] 唐炬, 樊雷, 张晓星, 等. 用谐波小波包变换法提取GIS局部放电信号多尺度特征参数[J]. 电工技术学报, 2015, 30(3): 250-257.
Tang Ju, Fan Lei, Zhang Xiaoxing, et al.Multi-scale feature parameters extraction of GIS partial discharge signal with harmonic wavelet packet transform[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 250-257.
[20] 孙曙光, 于晗, 杜太行, 等. 基于振动信号样本熵和相关向量机的万能式断路器分合闸故障诊断[J]. 电工技术学报, 2017, 32(7): 20-30.
Sun Shuguang, Yu Han, Du Taihang, et al.Diagnosis on the switching fault of conventional circuit breaker based on vibration signal sample entropy and RVM[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 20-30.
[21] 孙曙光, 于晗, 杜太行, 等. 基于多特征融合与改进QPSO-RVM的万能式断路器故障振声诊断方法[J]. 电工技术学报, 2017, 32(19): 107-117.
Sun Shuguang, Yu Han, Du Taihang, et al.Vibration and acoustic joint fault diagnosis of conventional circuit breaker based on multi-feature fusion and improved QPSO-RVM[J]. Transactions of China Electrotechnical Society, 2017, 32(19): 107-117.
[22] Pincus S.Assessing serial irregularity and its implications for health[J]. Annals of the New York Academy of Sciences, 2001, 954(1): 245-267.
[23] 王刘旺, 朱永利, 贾亚飞,等. 局部放电大数据的并行PRPD分析与模式识别[J]. 中国电机工程学报, 2016, 36(5): 1236-1244.
Wang Liuwang, Zhu Yongli, Jia Yafei, et al.Parallel phase resolved partial discharge analysis for pattern recognition on massive PD data[J]. Proceedings of the CSEE, 2016, 36(5): 1236-1244. |