[1] Chapelle O, Vapnik V,Bengio Y.Model selection for small sample regression[J]. Journal of Machine Learing, 2002, 48(1-3): 9-23.
[2] 陈佳成, 唐凯, 徐建. GW□-252隔离开关的机械故障及对策[J]. 电气技术, 2007(11): 69-70, 73.
Chen Jiacheng, Tang Kai, Xu Jian.Mechanical failure of GW□-252 switch-disconnector and the method of solving[J]. Electrical Engineering, 2007(11): 69-70, 73.
[3] 张一茗, 李少华, 陈士刚, 等. 基于ReliefF特征量优化及BP神经网络识别的高压隔离开关故障类型与位置诊断方法[J]. 高压电器, 2018, 54(2): 307-314.
Zhang Yiming, Li Shaohua, Chen Shigang, et al.Fault type and position diagnosis method of high-voltage isolating switch based on ReliefF characteristic quantity optimization and BP neural network recognition[J]. High Voltage Apparatus, 2018, 54(2): 307-314.
[4] 王雷,张瑞青,盛伟,等. 基于支持向量机的回归预测和异常数据检测[J]. 中国电机工程学报,2009, 29(8):92-96.
Wang Lei, Zhang Ruiqing, Sheng Wei, et al.Regression forecast and abnormal data detection based on support vector regression[J]. Proceedings of the CSEE, 2009, 29(8):92-96.
[5] 唐炬,林俊亦,卓然,等. 基于支持向量数据描述的局部放电类型识别[J]. 高电压技术, 2013, 39(5): 1046-1053.
Tang Ju, Lin Junyi, Zhuo Ran, et al.Partial discharge type recognition based on support vector data description[J]. High Voltage Engineering, 2013, 39(5): 1046-1053.
[6] 顾笑伟, 王智伟, 王占伟, 等. 基于密度权重支持向量数据描述的冷水机组故障检测[J]. 化工学报, 2017, 68(3): 1099-1108.
GuXiaowei, Wang Zhiwei, Wang Zhanwei, et al. Chiller fault detection by density weighted support vector data description[J]. CIESC Journal, 2017, 68(3): 1099-1108.
[7] Shan Jianfeng, Wang Liangwei. Circuit fault diagnosis based on OEMD and SVDD classifier of KFPCM optimal algorithm[J]. Applied Mechanics and Materials, 2015, 738-739: 366-372.
[8] 许敏, 王士同, 顾鑫, 等. 基于最小包含球的大数据集域自适应快速算法[J]. 模式识别与人工智能, 2013, 26(2): 159-168.
Xu Min, Wang Shitong, Gu Xin, et al.A fast learning algorithm based on minimum enclosing ball for large domain adaptation[J]. PR & AI, 2013, 26(2): 159-168.
[9] 黄南天,方立华,王玉强,等. 基于局域均值分解和支持向量数据描述的高压断路器机械状态监测[J]. 电工电能新技术, 2017, 36(1): 73-80.
Huang Nantian, Fang Lihua, Wang Yuqiang, et al.Machinery condition monitoring of high voltage circuit breakers based on local mean decomposition and support vector data description[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(1): 73-80.
[10] Huang Nantian, Fang Lihua, Wang Yuqiang, et al.Machinery condition monitoring of high voltage circuit breakers basrd on local mean decomposition and support vector data description[J]. Advanced Technology of Electrical Engineering and Energy, 2017, 36(1): 73-80.
[11] 李赢, 舒乃秋. 基于模糊聚类和完全二叉树支持向量机的变压器故障诊断[J]. 电工技术学报, 2016, 31(4): 64-70.
Li Ying, ShuNaiqiu. Transformer fault diagnosis based on fuzzy clustering and complete binary tree support vector machine[J]. Transactions of China Electrotechical Society, 2016, 31(4): 64-70.
[12] 赵犁丰, 王栋. 基于加权多宽度高斯核函数的聚类算法[J]. 现代电子技术, 2011, 34(10): 78-81.
Zhao Lifeng, Wang Dong.Support vector clustering algorithm based on WGKMW[J]. Modern Electronics Technique, 2011, 34(10): 78-81.
[13] Qiao Feng, ZhaoHaoming, Zhang Feng, et al. A novel method for fault diagnosis based on PCA enhanced by wavelet denoising[J]. Advanced Materials Research, 2013, 756-759: 3450-3454.
[14] Hannan S A, Bhagile V D, Manza R R, et al.Development of an expert system for diagnosis and appropriate medical prescription of heart disease using SVM and RBF[J]. International Journal of Computer Science and Information Security, 2010, 8(5):795-802.
[15] Luo Hui, Wang Youren, Cui Jiang.A SVDD approach of fuzzy classification for analog circuit fault diagnosis with FWT as preprocessor[J]. Expert Systems with Applications, 2011, 38(8): 10554-10561.
[16] 黄飞腾, 南余荣, 翁国庆, 等. 计及监测可信度的扰动源定位粒子群算法[J]. 电工技术学报, 2016, 31(16): 215-222.
Huang Feiteng, Nan Yurong, Weng Guoqing, et al.Particle swarm optimization of disturbance source location with monitoring reliability[J]. Transactions of China Electrotechical Society, 2016, 31(16): 215-222.
[17] 何怡刚,祝文姬,周炎涛,等.基于粒子群算法的模拟电路故障诊断方法[J].电工技术学报,2010, 25(6):163-171.
He Yigang, Zhu Wenji, Zhou Yantao,et al.An analog circuit diagnosis method based on particle swarm optimization algorithm[J]. Transactions of China Electrotechical Society, 2010, 25(6):163-171.
[18] 尉军军,全力,彭桂雪,等. 基于最小二乘支持向量机的励磁特性曲线拟合[J]. 电力系统保护与控制,2010,38(11): 15-17, 24.
Wei Junjun, Quan Li, Peng Guixue, et al.Curve fitting of excitation characteristics based on the least squares support vector machine[J]. Power System Protection and Control, 2010,38(11):15-17, 24.
[19] 付文龙,周建中,李超顺,等.基于模糊K近邻支持向量数据描述的水电机组振动故障诊断研究[J].中国电机工程学报, 2014, 34(32): 5788-5795.
Fu Wenlong, Zhou Jianzhong, Li Chaoshun, et al.Vibrant fault diagnosis for hydro-electric generating unit based on support vector data description improved with fuzzy K nearest neighbor[J]. Proceedings of the CSEE, 2014, 34(32): 5788-5795.
[20] 韩富春,高文军,廉建鑫,等. 基于免疫优化多分类SVM的变压器故障诊断新方法[J].电力系统保护与控制, 2012, 40(2): 106-110.
Han Fuchun, GaoWenjun, Lian Jianxin, et al. A novel approach based on multi-class support vector machine of immune optimization for transformer fault diagnosis[J]. Power System Protection and Control, 2012, 40(2): 106-110.
[21] 程序, 关永刚, 张文鹏, 等. 基于因子分析和支持向量机算法的高压断路器机械故障诊断方法[J].电工技术学报, 2014, 29(7):209-215.
Cheng Xu, Guan Yonggang, Zhang Wenpeng, et al.Diagnosis method on the mechanical failure of high voltage circuit breakers based on factor analysis and SVM[J]. Transactions of China Electrotechical Society, 2014, 29(7):209-215. |