|
|
Backstepping Control Based on Adaptive Modified Laguerre ecurrent Neural Network for Permanent Magnet Linear Synchronous Motor |
Zhao Ximei, Wu Yongkang |
School of Electrical Engineering Shenyang University of Technology Shenyang 110870 China; |
|
|
Abstract A backstepping control approach based on adaptive modified Laguerre recurrent neural network (AMLRNN) was proposed for permanent magnet linear synchronous motor (PMLSM) servo system which is vulnerable to influence of the uncertainties, such as parameter variations and nonlinear external disturbances. Firstly, the dynamic model of PMLSM with the uncertainties was established. And then, two optimal learning rates were derived by the on-line parameter training methodology based on the Lyapunov stability theorem to accelerate parameter convergence. This method can avoid the inherent problem of explosion of complexity and chattering phenomenon existed in the general adaptive backstepping control system, and make the system have good transient performance and robust performance. Finally, the experimental results confirm that the proposed scheme is effective and feasible. Compared with the general adaptive backstepping control system, the backstepping control system using AMLRNN has more superior control performance, and the position tracking error of system is obviously reduced.
|
Received: 29 August 2017
Published: 24 May 2018
|
|
|
|
|
[1] 寇宝泉, 张赫, 郭守仑, 等. 辅助极一体式永磁同步直线电机端部定位力抑制技术[J]. 电工技术学报, 2015, 30(6): 106-113. Kou Baoquan, Zhang He, Guo Shoulun, et al.End effect detent force reduction for permanent magnet linear synchronous motors with auxiliary poles one- piece structure[J]. Transactions of China Electro- technical Society, 2015, 30(6): 106-113. [2] 赵希梅, 赵久威. 精密直驱龙门系统的交叉耦合互补滑模控制[J]. 电工技术学报, 2015, 30(11): 7-12. Zhao Ximei, Zhao Jiuwei.Cross-coupled com- plementary sliding mode control for precision direct- drive gantry system[J]. Transactions of China Elec- trotechnical Society, 2015, 30(11): 7-12. [3] 赵希梅, 王晨光. 永磁直线同步电机的自适应增量滑模控制[J]. 电工技术学报, 2017, 32(11): 111-117. Zhao Ximei, Wang Chenguang.Adaptive incremental sliding mode control for permanent magnet linear synchronous motor[J]. Transactions of China Electro- technical Society, 2017, 32(11): 111-117. [4] 赵希梅, 马志军, 朱国昕. 永磁直线同步电机自适应PD型迭代学习控制[J]. 沈阳工业大学学报, 2016, 38(1): 7-12. Zhao Ximei, Ma Zhijun, Zhu Guoxin.Adaptive PD-type iterative learning control for permanent magnet linear synchronous motor[J]. Journal of Shenyang University of Technology, 2016, 38(1): 7-12. [5] Lin C H.Adaptive modified elman neural network integral backstepping control for a PMLSM drive system[J]. International Review of Electrical Engineering, 2012, 7(5): 5451-5461. [6] Chen M Y, Lu J S.Application of adaptive variable speed back-stepping sliding mode controller for PMLSM position control[J]. Journal of Marine Science & Technology, 2014, 22(3): 392-403. [7] 汪涛, 胡剑波, 李飞, 等. 一类纯反馈非线性系统的反推近似滑模控制[J]. 计算机仿真, 2016, 33(9): 358-363. Wang Tao, Hu Jianbo, Li Fei, et al.Backstepping approximate sliding mode control for a class of pure-feedback nonlinear systems[J]. Computer Simulation, 2016, 33(9): 358-363. [8] Yang Zijiang, Nagai T, Kanae S, et al.Dynamic surface control approach to adaptive robust control of nonlinear systems in semi-strict feedback form[J]. International Journal of Systems Science, 2007, 38(9): 709-724. [9] Roopaei M, Zolghadri M, Meshksar S.Enhanced adaptive fuzzy sliding mode control for uncertain nonlinear systems[J]. Communications in Nonlinear Science & Numerical Simulation, 2009, 14(9-10): 3670-3681. [10] Lin C H.Adaptive recurrent wavelet neural network integral backstepping control of permanent magnet linear synchronous motor drive[J]. Journal of Computational & Theoretical Nanoscience, 2013, 19(2): 444-448. [11] Xu Bin, Yang Chenguang, Shi Zhongke.Reinforcement learning output feedback NN control using deterministic learning technique[J]. IEEE Transa- ctions on Neural Networks & Learning Systems, 2014, 25(3): 635-641. [12] Ting C S, Lieu J F, Liu C S, et al.An adaptive FNN control design of PMLSM in stationary reference frame[J]. Journal of Control Automation & Electrical Systems, 2016, 27(4): 1-15. [13] Tsai C, Li Y, Tai F, et al.Intelligent adaptive motion control using fuzzy basis function networks for electric unicycle[J]. Asian Journal of Control, 2015, 17(3): 977-993. [14] Lin C H.Composite recurrent Laguerre orthogonal polynomials neural network dynamic control for continuously variable transmission system using altered particle swarm optimization[J]. Nonlinear Dynamics, 2015, 81(3): 1219-1245. [15] Li Ruihong, Chen Weisheng.Lyapunov-based fractional- order controller design to synchronize a class of fractional-order chaotic systems[J]. Nonlinear Dynamics, 2013, 76(1): 785-795. |
|
|
|