|
|
Detection of the Dominant Inertial Modes Based on Wavelet Energy Coefficient |
Deng Jixiang1, Ou Xiaogao1, Yao Tianliang2 |
1. Northeast Dianli University Jilin 132012 China 2. Jiangxi Vocational & Technical College of Electricity Nanchang 330032 China |
|
|
Abstract A new algorithm about dominant inertial modes detection for power systems is proposed in this paper. First, empirical mode decomposition(EMD) is used to acquire main features of inertial modes from system power angle or power curves, then continuous wavelet transform is effectively applied to extract modes parameters, finally the dominant inertial modes are identified by calculation of wave energy coefficient. This method, unrestricted from the size of system, can effectively analyze and detect the dominant inertial modes of power systems, and it can overcome the defect of dimension disaster to linear eigenvalue analysis algorithm when calculate the dominant inertial modes of system. The simulation results show that this algorithm can accurately detect dominant inertial modes of power systems. The results are identical to the analytical conclusions based on normal form theory, then it is verified that this algorithm can be correctly and effectively used to detect the dominant inertial modes of power systems.
|
Received: 28 May 2007
Published: 17 February 2014
|
|
|
|
|
[1] Kundur P. 电力系统稳定与控制[M]. 北京: 科学出版社, 2002. [2] 余贻鑫, 李鹏. 大区电网弱互联对互联系统阻尼和动态稳定性的影响[J]. 中国电机工程学报, 2005, 25(11): 6-11. [3] Kakimoto N, Nakanishi A, Tomiyama K. Instability of oscillation mode by autoparametric resonance[J]. IEEE Transactions on Power Systems, 2004, 19(4), 1961-1970. [4] 邓集祥, 华瑶, 韩雪飞. 大干扰稳定中低频振荡模式的作用研究[J]. 中国电机工程学报, 2003, 23(11): 60-64. [5] 邓集祥, 纪晶, 邓斌. 基于复合模式的电力系统超低频振荡产生机理[J]. 电工技术学报, 2007, 22(8): 84-89. [6] 邓集祥, 赵丽丽. 主导低频振荡模式二阶非线性相关作用的研究[J]. 中国电机工程学报, 2005, 25(7): 75-80. [7] Zhu S, Vuttal V, Kliemann W. Analyzing dynamic performance of power systerms over parameter space using normal forms of vector fields part-2; comparison of the system structure[J]. IEEE Transaction on Power Systems, 2001, 16(3): 451-455. [8] 邓集祥, 陈武辉, 涂进, 等. 电力系统3阶解析解的推导及验证[J]. 中国电机工程学报, 2007, 27(28): 12-18. [9] Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]. Proceedings of the Royal Society, London, 1998: 903-995. [10] 李天云, 高磊, 赵妍. 基于HHT的电力系统低频振荡分析[J]. 中国电机工程学报, 2006, 26(14): 24-29. [11] 王铁强, 贺仁睦, 徐东杰, 等. Prony算法分析低频振荡的有效性研究[J]. 中国电力, 2001, 34(11): 38-41. [12] 肖晋宇, 谢小荣, 胡志祥. 电力系统低频振荡在线辨识的改进Prony算法[J]. 清华大学学报, 2004, 44(7): 883-887. [13] 曹维, 翁斌伟, 陈陈. 电力系统暂态变量的Prony分析[J]. 电工技术学报, 2000, 15(6): 56-60. [14] 张鹏飞, 薛禹胜, 张启平. 电力系统时变振荡特性的小波脊分析[J]. 电力系统自动化, 2004, 28(16): 32-35. [15] 罗光坤, 张令弥. 基于Morlet小波变换的模态参数识别研究[J]. 振动与冲击, 2007, 26(7): 135-138. [16] 张贤达. 现代信号处理[M]. 北京: 清华大学出版社, 2002. [17] 倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京: 清华大学出版社, 2002. [18] 邓集祥, 涂进, 陈武晖. 大干扰下主导低频振荡模式的鉴别[J]. 电网技术, 2007, 31(7): 36-41. |
|
|
|