|
|
Analysis and Restraining of Permanent Magnet Synchronous Wind Turbine Shaft Vibration |
Liu Jun1, Zhou Feihang1,2, Liu Fei1,2 |
1. Faculty of Automation and Information Engineering Xi’an University of Technology Xi’an 710048 China; 2. Department of Information Engineering Engineering University of CAPF Xi’an 710048 China; |
|
|
Abstract Due to the randomness and uncertainty of wind speed, the shadow effect and wind shear effect can motivate the natural frequencies of the transmission shaft on large PMSWT, which triggers shaft vibration. This vibration process will not only produce huge noise, but also easily lead to the loosening of unit parts and damage of the actuator, to speed up the transmission shaft fatigue until its fatigue life runs out. It can seriously affect the service life of the unit. In addition, vibration is more likely to cause grid voltage flicker and power fluctuation, affecting the power quality. In this paper, shaft vibration of permanent magnet synchronous wind turbine (PMSWT) during the time of maximum power point tracking (MPPT) can be divided into rigid vibration and torsional vibration based on modal analysis. Then, the reason and theory of shaft vibration have been analyzed, and the corresponding strategy has been proposed to suppress the shaft vibration. The proposed strategy can suppress the torsional vibration effectively, reduce the rigid vibration, make full use of wind energy, and improve the capacity of wind turbine.
|
Received: 22 September 2016
Published: 05 March 2018
|
|
|
|
|
[1] Li S, Haskew T, Swatloski R P, et al.Optimal and direct-current vector control of direct-driven PMSG wind turbines[J]. IEEE Transactions on Power Electronics, 2012, 27(5): 2325-2337. [2] Yan J, Lin H, Feng Y, et al.Improved sliding mode model reference adaptive system speed observer for fuzzy control of direct-drive permanent magnet synchronous generator wind power generation system[J]. IET Renewable Power Generation, 2013, 7(1): 28-35. [3] Geng H, Xu D.Stability analysis and improvements for variable-speed multipole permanent magnet synchronous generator-based wind energy conversion system[J]. IEEE Transactions on Sustainable Energy, 2011, 2(4): 459-467. [4] Chen J, Gong C.On optimizing the aerodynamic load acting on the turbine shaft of PMSG-based direct- drive wind energy conversion system[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 4022-4031. [5] Orlowska-Kowalska T, Szabat K.Damping of torsional vibrations in two-mass system using adaptive sliding neuro-fuzzy approach[J]. IEEE Transactions on Industrial Informatics, 2008, 4(1): 47-57. [6] Licari J, Ugalde-Loo C E, Ekanayake J B, et al. Damping of torsional vibrations in a variable-speed wind turbine[J]. Energy Conversion, IEEE Transa- ctions on, 2013, 28(1): 172-180. [7] Muszynski R, Deskur J.Damping of torsional vibrations in high-dynamic industrial drives[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 544-552. [8] 奚鑫泽, 耿华, 杨耕. 含主动轴系扭振阻尼的并网双馈风电场惯量控制方法[J]. 电工技术学报, 2017, 32(6): 136-144. Xi Xinzeng, Geng Hua, Yang Jing.Inertia control of the grid connected doubly fed induction generator based wind farm with drive-train torsion active damping[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 136-144. [9] 陈家伟, 陈杰, 龚春英. 永磁直驱风力发电系统气动载荷抑制策略[J]. 中国电机工程学报, 2013, 33(21): 99-108. Chen Jiawei, Chen Jie, Gong Chunying.An Aerody- namic load reduction method for PMSG-based direct-drive WECS[J]. Proceedings of the CSEE, 2013, 33(21): 99-108. [10] Orlowska-Kowalska T, Szabat K.Neural-network application for mechanical variables estimation of a two-mass drive system[J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1352-1364. [11] Szabat K, Orlowska-Kowalska T.Performance improvement of industrial drives with mechanical elasticity using nonlinear adaptive Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2008, 55(3): 1075-1084. [12] Hasen A D, Michalke G.Modelling and control of variable-speed multi-pole permanent magnet synchronous generator wind turbine[J]. Wind Energy, 2008, 11(5): 537-554. [13] 王利兵, 毛承雄, 陆继明, 等. 基于反馈线性化原理的直驱风力发电机组控制系统设计[J]. 电工技术学报, 2011, 26(7): 1-6. Wang Libing, Mao Chengxiong, Lu Jiming,et al.A control system design of direct-drive wind turbine based on the principle of feedback linearization[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 1-6. [14] 周飞航, 刘军. 基于状态反馈的直驱风电系统模糊控制策略[J]. 电网技术, 2016, 40(9): 2758-2763. Zhou Feihang, Liu Jun.Fuzzy control strategy of direct-drive wind power systembased on state feed- back[J]. Power System Technology, 2016, 40(9): 2758-2763. [15] 蔺红, 晁勤. 并网型直驱式永磁同步风力发电系统暂态特性仿真分析[J]. 电力自动化设备, 2010, 30(11): 1-5. Lin Hong, Chao Qin.The transient characteristic simulation analysis of grid type direct drive permanent magnet synchronous wind power system[J]. Electric Power Automation Equipment, 2010, 30(11): 1-5. [16] Anderson P M, Bose A.Stability simulation of wind turbine systems[J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(12): 3791-3795. [17] Huang H, Chung C Y.Adaptive neuro-fuzzy controller for static VAR compensator to damp out wind energy conversion system oscillation[J]. IET Generation, Transmission & Distribution, 2013, 7(2): 200-207. [18] Dolan D S L, Lehn P W. Simulation model of wind turbine 3p torque oscillations due to wind shear and tower shadow[C]//IEEE Power Systems Conference and Exposition, Atlanta, USA, 2006: 2050-2057. [19] De Kooning J D M, Vandoorn T L, Van de Vyver J, et al. Shaft speed ripples in wind turbines caused by tower shadow and wind shear[J]. IET Renewable Power Generation, 2014, 8(2): 195-202. [20] Wang Biao, Ding Lijie, Zhang Hua, et al.Study of the directly type driven of permanent magnet synchronous wind turbine containing the dynamic characteristics[C]//IEEE Power and Energy Engin- eering Conference, Shanghai, China, 2012: 1-4. [21] 刘军, 周飞航, 黄杨. 永磁同步风力发电系统附加虚拟阻尼控制仿真及验证[J]. 农业工程学报, 2016, 32(15): 89-96. Liu Jun, Zhou Feihang, Huang Yang.Simulation and validation of additional virtual damping control of permanent magnet synchronous wind power system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(15): 89-96. [22] 姚骏, 曾欣, 李嘉伟. 并网双馈感应风电系统轴系振荡特性[J]. 电工技术学报, 2017, 32(6): 123-135. Yao Jun, Zeng Xin, Li Jiawei.Shaft oscillation characteristics of grid-connected doubly-fed induction generator-based wind power generation system[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 123-135. [23] 刘忠义, 刘崇茹, 李庚银. 机械轴系模型对直驱永磁同步风力发电机暂态分析的影响[J]. 电工技术学报, 2016, 31(2): 145-152. Liu Zhongyi, Liu Chongru, Li Gengyin.Influence of shafting models in the transient analysis of wind turbines with permanent magnet synchronous genera- tors[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 145-152. [24] 周志超, 王成山, 郭力, 等. 变速变桨距风电机组的全风速限功率优化控制[J]. 中国电机工程学报, 2015, 35(8): 1837-1844. Zhou Zhichao, Wang Chengshan, Guo Li, et al.Output power curtailment control of variable-speed variable-pitch wind turbine generator at all wind speed regions[J]. Proceedings of the CSEE, 2015, 35(8): 1837-1844. |
|
|
|