|
|
Droplet Impingement Characteristics and Rime Ice Accretion of Rotating Wind Turbine |
Shu Lichun1, Liang Jian1,2, Hu Qin1, Jiang Xingliang1, Wu Xiaodong1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. Shandong Luneng Intelligency Technology Co. LTD Jinan 250101 China; |
|
|
Abstract Iced wind turbine often suffers from shutdown and security issues, which limits the development of wind power industry. A numerical study of droplet impingement on 3-D rotating blade was carried out by Lagrange method. The performance of droplets under various environmental and operating conditions was studied and verified in the artificial icing tests. Numerical results show that the collision region mainly accumulates at the leading edge and the tip of the blade, and the collision area also increases at the tip. Collision efficiency increases and collision area expands with the increase of media volume diameter. Lower rotating speed or higher wind speed will cause the collision region moving to pressure side of the blade. The numerical simulation shows good consistency with the icing test under rime ice condition.
|
Received: 17 September 2016
Published: 05 March 2018
|
|
|
|
|
[1] 谭谨, 王晓茹, 李龙源. 含大规模风电的电力系统小扰动稳定研究综述[J]. 电力系统保护与控制, 2014, 42(3): 15-23. Tan Jin, Wang Xiaoru, Li Longyuan.A survey on small signal stability analysis of power systems with wind power integration[J]. Power System Protection and Control, 2014, 42(3): 15-23. [2] Pryor S C, Barthelmie R J.Climate change impacts on wind energy: a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1): 430-437. [3] Dalili N, Edrisy A, Carriveau R.A review of surface engineering issues critical to wind turbine perfor- mance[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 428-438. [4] 绳晓玲, 万书亭, 李永刚, 等. 基于坐标变换的双馈风力发电机组叶片质量不平衡故障诊断[J]. 电工技术学报, 2016, 31(7): 188-197. Sheng Xiaoling, Wan Shuting, Li Yonggang, et al.Fault diagnosis for blade mass imbalance of wind turbines with DFIG based on coordinate transfor- mation[J]. Transactions of China Electrotechnical Society, 2016, 31(7): 188-197. [5] Etemaddar M, Hansen M O L, Moan T. Wind turbine aerodynamic response under atmospheric icing condi- tions[J]. Wind Energy, 2014, 17(2): 241-265. [6] Han Yiqiang, Palacios Jose, Schmitz Sven.Scaled ice accretion experiments on a rotating wind turbine blade[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 109: 55-67. [7] Homola M C, Wallenius T, Makkonen L, et al.The relationship between chord length and rime icing on wind turbines[J]. Wind Energy, 2010, 13(7): 627-632. [8] Fu P, Farzaneh M.A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(4-5): 181-188. [9] Reid T, Baruzzi G, Ozcer I, et al.FENSAP-ICE simulation of icing on wind turbine blades, part 1: performance degradation[C]//51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas, 2013: 7-10. [10] 易贤, 王开春, 马洪林, 等. 大型风力机结冰过程水滴收集率三维计算[J]. 空气动力学学报, 2013, 31(6): 745-751. Yi Xian, Wang Kaichun, Ma Honglin, et al.3-D numerical simulation of droplet collection efficiency in large-scale wind turbine icing[J]. Acta Aerody- namica Sinica, 2013, 31(6): 745-751. [11] 郝艳捧, 刘国特, 阳林, 等. 风力机组叶片覆冰数值模拟及其气动载荷特性研究[J]. 电工技术学报, 2015, 30(10): 292-300. Hao Yanpeng, Liu Guote, Yang Lin, et al.Study on ice numerical simulation and its power loss characteristics for the blades of wind turbine[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 292-300. [12] Virk M S, Homola M C, Nicklasson P J.Effect of rime ice accretion on aerodynamic characteristics of wind turbine blade profiles[J]. Wind Engineering, 2010, 34(2): 207-218. [13] Fluent A.14.0 Tutorial guide-ANSYS[J]. Inc., Canonsburg, PA, 2011. [14] Tan S C, Papadakis M.General effects of large droplet dynamics on ice accretion modeling[C]// 41st Aerospace Sciences, Meeting and Exhibit, Aerospace Science Meetings, Reno, Nevada, 2003, 392: 41. [15] 张暕, 何青. 输电线路覆冰时导线表面形状对碰撞系数的影响[J]. 电工技术学报, 2016, 31(13): 209-217. Zhang Jian, He Qing.Influence of conductor surface shape on collision coefficient during transmission line icing[J]. Transactions of China Electrotechnical Society, 2016, 31(13): 209-217. [16] 孙志国, 朱春玲. 三维机翼表面水滴撞击特性计算[J]. 计算物理, 2011, 28(5): 677-685. Sun Zhiguo, Zhu Chunling.Calculation of water- droplet impingement on wing surface[J]. Chinese Journal of Computational Physics 2011, 28(5): 677-685. [17] Tong X L, Luke E.Eulerian simulations of icing collection efficiency using a singularity diffusion model[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2005: 1246(11). [18] 胡琴, 殷攀程, 吴彬, 等. 交流工作电压下染污方式对220kV复合绝缘子覆冰及闪络特性的影响[J]. 中国电机工程学报, 2015, 35(18): 4817-4824. Hu Qin, Yin Pancheng, Wu Bin, et al.Influence of polluting methods on icing and flashover characteristics of 220kV composite insulators under AC working voltage[J]. Proceedings of the CSEE, 2015, 35(18): 4817-4824. [19] 蒋兴良, 申强, 舒立春, 等. 利用旋转多圆柱导体覆冰质量预测湿增长过程覆冰参数[J]. 高电压技术, 2009, 35(12): 3071-3076. Jiang Xingliang, Shen Qiang, Shu Lichun, et al.Prediction of wet growth icing parameters by icing quantity of rotating multi-cylindrical conductors[J]. High Voltage Engineering, 2009, 35(12): 3071-3076. |
|
|
|