|
|
Development of Power-Electronized Distribution Grids and the New Supraharmonics Issues |
Xiao Xiangning, Liao Kunyu, Tang Songhao, Fan Wenjie |
State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Beijing 102206 China; |
|
|
Abstract Combining with the development and application of semiconductor technology and smart distribution grids, this paper discusses the power-electronized system and its characteristics of four aspects, and also analyzes its major demands. The power-electronization has changed the source-grid-load parameters and characteristics of traditional power systems. A new generation of power system presents the features of nonlinearity, highly sensibility, fast variation, impact and multi-energy regulation, which brings great challenges to high power quality and stable operation of power system. This paper summarized the typical problems, and pointed out that new concepts, new theories, new methods and new technical standards should be taken as a whole to solve problems. Supraharmonic is a new issue under the power-electronized background of distribution grids. This paper focuses on the origin, characteristics, hazards, propagation and electromagnetic compatibility standard of supraharmonics. Then from the aspects of frequency domain, time domain and time-frequency domain, this paper also introduces some suggested indexes for reference.
|
Received: 27 November 2017
Published: 05 March 2018
|
|
|
|
|
[1] 马钊, 周孝信, 尚宇炜, 等. 未来配电系统形态及发展趋势[J]. 中国电机工程学报, 2015, 35(6): 1289-1298. Ma Zhao, Zhou Xiaoxin, Shang Yuwei, et al.Form and development trend of future distribution system[J]. Proceedings of the CSEE, 2015, 35(6): 1289-1298. [2] 国家能源局. 配电网建设改造行动计划(2015-202年)[EB/OL].(2015-08-31). http://www.nea.gov.cn/2015-09/08/c_134600984.htm. [3] 中电联、2016年全国电力工业统计快报一览表, 2017, 1. [4] 马钊, 安婷, 尚宇炜. 国内外配电前沿技术动态及发展[J]. 中国电机工程学报, 2016, 36(6): 1552-1567. Ma Zhao, An Ting, Shang Yuwei.State of the art and development trends of power distribution techno- logies[J]. Proceedings of the CSEE, 2016, 36(6): 1552-1567. [5] 赵敏, 李顺昕, 岳云力, 等. 配电网电力电子化的表现形态及影响分析[J]. 中国高新技术企业, 2017(1): 149-150. Zhao Min, Li Shunxin, Yue Yunli, et al.Analysis on the manifestation and influence of power-electronization in distribution grids[J]. China High Tech Enterprises, 2017(1): 149-150. [6] 郑琼林. 交流传动HXD1电力机车谐振原因分析与对策[J]. 变频器世界, 2009(5): 40-44. Zheng Qionglin.A probe on causes and solution of the HXD1 AC locomotive’s resonance[J]. The World of Inverters, 2009(5): 40-44. [7] 凌椿成, 姚钢, 周荔丹. 港口供配电系统电压闪变分析及其治理措施[J]. 电器与能效管理技术, 2016(9): 65-74. Ling Chuncheng, Yao Gang, Zhou Lidan.Voltage flicker analysis and control measures of port power supply and distribution system[J]. Dianqi Yu Nengxiao Guanli Jishu, 2016(9): 65-74. [8] 李春, 邓君楷. 第三代半导体产业概况剖析[J]. 集成电路应用, 2017, 34(2): 87-90. Li Chun, Deng Junkai.Analysis of the third generation semiconductor industry[J]. Applications, 2017, 34(2): 87-90. [9] 张乐年. 突破第三代碳化硅半导体技术, 即将撬动4000突破第三代碳化硅半导体技术, 即将撬动4000亿美元大市场. http://www.taizhou.c. [10] 周孝信, 陈树勇, 鲁宗相. 电网和电网技术发展的回顾与展望-试论三代电网[J]. 中国电机工程学报, 2013, 33(22): 1-11. Zhou Xiaoxin, Chen Shuyong, Lu Zongxiang.Review and prospect for power system development and related technologies: a concept of three-generation power systems[J]. Proceedings of the CSEE, 2013, 33(22): 1-11. [11] Anders Larsson.High frequency distortion in power grids due to electronic equipment[D]. Luleå tekniska universitet, 2006. [12] A Emanuel, A McEachern.Electric power definitions: a debate[C]//Proceedings of the IEEE Power & Energy Society (PES) General Meeting, Vancouver, BC, Canada, 2013: 21-25. [13] Aurora Gil-de-Castro, Sarah K Ronnberg, Math HJ Bollen. A study about harmonic interaction between devices[C]//2014 IEEE 16th International Conference on Harmonics and Quality of Power (ICHQP), Bucharest, Romania, 2014: 728-732. [14] 黄如, 叶乐, 廖怀林. 可再生能源互联网中的微电子技术[J]. 中国科学: 信息科学, 2014, 44(6): 728-742. Huang Ru, Ye Le, Liao Huailin.Microelectronics technologies in renewable energy internet[J]. Science China: Information Science, 2014, 44(6): 728-742. [15] Xia Z, Zhu Z, Howe D.Analytical magnetic field analysis of Halbach magnetized PM machines[J]. IEEE Transactions on Magnetics, 2001, 37(4): 2827-2830. [16] 袁小明, 程时杰, 胡家兵. 电力电子化电力系统多尺度电压功角动态稳定问题[J]. 中国电机工程学报, 2016, 36(19): 5145-5154. Yuan Xiaoming, Cheng Shijie, Hu Jiabing.Multi- time scale voltage and power angle dynamics in power electronics dominated large power systems[J]. Proceedings of the CSEE, 2016, 36(19): 5145-5154. [17] 王雪梅. 宽禁带碳化硅功率器件在电动汽车中的研究与应用[J]. 中国电机工程学报, 2014, 34(3): 371-379. Wang Xuemei.Researches and applications of wide bandgap SiC power devices in electric vehicles[J]. Proceedings of the CSEE, 2014, 34(3): 371-379. [18] 田世明, 栾文鹏, 张东霞, 等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报, 2015, 35(14): 3482-3494. Tian Shiming, Luan Wenpeng, Zhang Dongxia, et al.Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14): 3482-3494. [19] 肖湘宁. 新一代电网中多源多变换复杂交直流系统的基础问题[J]. 电工技术学报, 2015, 30(15): 1-14. Xiao Xiangning.Basic problems of the new complex AC-DC power grid with multiple energy resources and multiple conversions[J]. Proceedings of the CSEE, 2015, 30(15): 1-14. [20] 林海雪. No.6电功率理论的概况与发展[J]. 供用电, 2016(4): 32-39. Lin Haixue.No.6 general situation and development of power theory[J]. Distribution & Utilization, 2016(4): 32-39. [21] 肖湘宁, 罗超, 陶顺. 电气系统功率理论的发展与面临的挑战[J]. 电工技术学报, 2013, 28(9): 1-10. Xiao Xiangning, Luo Chao, Tao Shun.Development and challenges of power theory[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 1-10. [22] 伊曼纽尔. 功率定义及功率流的物理机制[M]. 车延博, 何学农, 等译. 北京: 中国电力出版社, 2014. [23] 刘华坤, 谢小荣, 何国庆, 等. 新能源发电并网系统的同步参考坐标系阻抗模型及其稳定性判别方法[J]. 中国电机工程学报, 2017, 37(14): 4002-4007. Liu Huakun, Xie Xiaorong, He Guoqing, et al.Synchronous reference frame based impedance model and stability criterion for grid-connected renewable energy generation systems[J]. Proceedings of the CSEE, 2017, 37(14): 4002-4007. [24] 肖湘宁, 罗超, 廖坤玉. 新能源电力系统次同步振荡问题研究综述[J]. 电工技术学报, 2017, 32(6): 85-97. Xiao Xiangning, Luo Chao, Liao Kunyu.Review of the research on subsynchronous oscillation issues in electric power system with renewable energy sources[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 85-97. [25] 林海雪. No.5改善电能质量的经济评估[J]. 供用电, 2016(2): 34-42. Lin Haixue.No.5 Economic evaluation on improvement of power quality[J]. Distribution & Utilization, 2016(2): 34-42. [26] 陶顺, 陈鹏伟, 肖湘宁, 等. 智能配电网不确定性建模与供电特征优化技术综述[J]. 电工技术学报, 2017, 32(10): 77-91. Tao Shun, Chen Pengwei, Xiao Xiangning, et al.Review on uncertainty modeling and power supply characteristics optimization technology in smart distribution network[J]. Transactions of China Elec- trotechnical Society, 2017, 32(10): 77-91. [27] 张喆. 含分布式电源的配电系统电能质量概率评估[D]. 北京: 华北电力大学, 2013. [28] 苗淼, 李兴源, 王曦. 大型并网风电场、光伏电站与直流系统交互影响分析[J]. 太阳能学报, 2015, 36(4): 878-885. Miao Miao, Li Xingyuan, Wang Xi.Analysis on interaction affect of large scale grid-connected wind farm,PV plantand HVDC systems[J]. Acta Energiae Solaris Sinica, 2015, 36(4): 878-885. [29] 匡慧敏, 罗安, 陈智勇. 多逆变器并网耦合谐振机理及有源阻尼优化方法[J]. 电网技术, 2016, 40(4): 1180-1189. Kuang Huimin, Luo An, Chen Zhiyong.Coupling resonances mechanism of grid-connected multi- parallel inverters and its active damping parameter optimal method[J]. Power System Technology, 2016, 40(4): 1180-1189. [30] 郭上华, 黄纯, 王磊, 等. 电压波动和闪变的检测与控制方法[J]. 继电器, 2004, 32(3): 45-48. Guo Shanghua, Huang Chun, Wang Wei, et al.Detection and suppression methods for voltage fluctuation and flicker[J]. Relay, 2004, 32(3): 45-48. [31] Math H J Bollen, Mats Häger, Christine Schwaegerl. Quantifying voltage variations on a time scales between 3 seconds and 10 minutes[C]//18th Inter- national Conference on Electricity Distribution, Turin, Italy, 2005: 1-5. [32] 林海雪. 电能质量指标的完善化及其展望[J]. 中国电机工程学报, 2014, 34(29): 5073-5079. Lin Haixue.Perfecting power quality indices and prospect[J]. Proceedings of the CSEE, 2014, 34(29): 5073-5079. [33] Hamzeh M, Ghazanfari A, Mokhtari H, et al.Integrating hybrid power source into an islanded MV microgird using CHB multilevel inverter under unbalanced and nonlinear load conditions[J]. IEEE Transactions on Energy Conversion, 2013, 28(3): 643-651. [34] Teodorescu R, Liserre M, Rodríguez P.Grid converters for photovoltaic and wind power systems[M]. Chichester, UK: John Wiley-IEEE, 2011. [35] 林海雪. 电能质量国家标准系列讲座第3讲公用电网谐波标准[J]. 建筑电气, 2011(6): 299-304. Lin Haixue.Lectures on national standard of power quality lecture three standards of harmonics in public supply network[J]. Building Electricity, 2011(6): 299-304. [36] IEEEStd 1459-2010 (Revision of IEEE Std 1459-2000) IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, 2010. [37] Walker D N, Bowler C E J, Jackson R L, et al. Results of subsynchronous resonance test at Mohave[J]. IEEE Transactions on Power Apparatus and Systems, 1975, 94(5): 1878-1889. [38] Narendra K, Fedirchuk D, Midence R, et al.New microprocessor based relay to monitor and protect power systems against sub-harmonics[C]//2011 IEEE Electrical Power and Energy Conference (EPEC), Winnipeg, MB, Canada, 2011: 438-443. [39] 董晓亮, 田旭, 张勇, 等. 沽源风电场串补输电系统次同步谐振典型事件及影响因素分析[J]. 高电压技术, 2017, 43(1): 321-328. Dong Xiaoliang, Tian Xu, Zhang Yong, et al.Practical SSR incidence and influencing factor analysis of DFIG-based series-compensated trans- mission system in Guyuan farms[J]. High Voltage Engineering, 2017, 43(1): 321-328. [40] 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366-2372. Xie Xiaorong, Liu Huakun, He Jingbo, et al.Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full- converter wind turbines and AC systems[J]. Pro- ceedings of the CSEE, 2016, 36(9): 2366-2372. [41] 廖坤玉, 陶顺, 姚黎婷, 等. RSC扰动分量与转差频率耦合引起的DFIG定子间谐波电流解析模型[J]. 电网技术, 2017, 41(4): 1077-1084. Liao Kunyu, Tao Shun, Yao Liting, et al.Analytical model for DFIG stator interharmonic current induced by coupling of RSC disturbance components and slip frequency[J]. Power System Technology, 2017, 41(4): 1077-1084. [42] Angulo I, Arrinda A, Fernández I, et al.A review on measurement techniques for non-intentional emissions above 2kHz[C]//2016 IEEE Energy Conference, Leuven, Belgium, 2016: 1-5. [43] Ana-Maria Blanco, Jan Meyer, Sarah Rönnberg, Math Bollen.Survey of supraharmonic emission of household appliances[C]//International Conference on Electricity Distribution, Glasgow, Scotland, 2017: 1-5. [44] Math H J Bollen, Sarah K Rönnberg. Primary and secondary harmonics emission; harmonic interaction- a set of definitions[C]//International Conference on Harmonics & Quality of Power, Belo Horizonte, Brazil, 2016: 703-708. [45] Aurora Gil-de-Castro, Sarah K Rönnberg, Math H J Bollen. A study about harmonic interaction between devices[C]//IEEE International Conference on Harmonics & Quality of Power, Bucharest, Romania, 2014: 728-736. [46] 林海雪. 电网谐波问题的新发展——谈超级谐波[J].供用电, 2016(1): 35-38. Lin Haixue.The new development of harmonic problems in power grid——about supraharmonics[J]. Distribution & Utilization, 2016(1): 35-38. [47] Ronnberg S K, Bollen M HJ, Wahlberg M, Interaction between narrowband power-line communication and end-user equipment[J]. IEEE Transactions on Power Delivery, 2016, 26(3): 2034-2039. [48] A Larsson.An overview of the origin and propa- gation of supraharmonics (2—150kHz)[J]. Brazilian Journal of Physics, 2014, 32(2b): 483-494. |
|
|
|