|
|
Application of Multi-Resonant Optimal Servo Controller in Medium Frequency Power Supply |
Zhang Yinfeng1, 2, Nie Ziling1, Zhao Zhihua1, Li Huayu1, Li Changle1 |
1. National Key Laboratory for Vessel Integrated Power System Technology Naval University of Engineering Wuhan 430033 China; 2. Yichang Training Group of Basic Air Force Early Warning Academy Yichang 443000 China |
|
|
Abstract The linear quadratic regulator cannot track reference without static error, and the output voltage total harmonic distortion (THD) is too high when proportional-resonant (PR) controller carries nonlinear load. Therefore, this paper presents an optimal multi-resonant servo control for the design of medium frequency power supply. This method can stabilize the closed-loop system stability and realize asymptotic tracking. Moreover, it has rapid dynamic response and strong harmonic suppression. A model of the medium frequency power system is established, and multi-resonant servo control is theoretic analyzed. Through the method of increasing the dimension of system matrix, the optimal tracking problem is transformed into the optimal adjustment problem. The LQR function of Matlab software is used to obtain the status feedback gain matrix. The simulations and experiments on the prototype show that the designed controller can bring good steady-state performance and dynamic performance to the closed-loop system, where the steady state voltage is between 114.8V and 115.2V and the dynamic recovery time is within 10ms. It is capable of strong anti-interference in the nonlinear load, and the output voltage harmonic is much lower than that by the PR control and robust control methods.
|
Published: 16 January 2018
|
|
Fund:国家自然科学基金(51407189,51507185)和国家重点基础研究发展计划(973计划)(2015CB251004)资助项目 |
Corresponding Authors:
聂子玲 男,1975年生,教授,博士生导师,研究方向电力电子与电力传动。E-mail: nieziling@163.com
|
|
|
|
[1] 张银锋, 聂子玲, 朱俊杰, 等. 基于二自由度有功/频率控制的中频逆变器并联系统仿真研究[J]. 电器与能效管理技术, 2015, 13(1): 42-49. Zhang Yinfeng, Nie Ziling, Zhu Junjie, et al. Research on parallel operation of medium frequency inverter based on two degree of freedom active power/frequency control[J]. Electrical & Energy Management Technology, 2015, 13(1): 42-49. [2] 葛红娟, 蒋华, 王培强. 基于内模原理的新型三相航空静止变流器闭环控制系统[J]. 电工技术学报, 2006, 21(9): 88-92. Ge Hongjuan, Jiang Hua, Wang Peiqiang. A novel three-phase aviation static inverter closed-loop control system based on the internal model principle[J]. Transactions of China Electrotechnical Society, 2006, 21(9): 88-92. [3] 顾和荣, 赵清林, 伞国成, 等. 三相并网逆变器有源孤岛检测方法研究[J]. 电力系统保护与控制, 2009, 37(12): 44-47. Gu Herong, Zhao Qinglin, San Guocheng, et al. Active islanding detection for three-phase grid- connected inverters[J]. Power System Protection and Control, 2009, 37(12): 44-47. [4] Timbus A, Liserre R. Evaluation of current controllers for distributed power generation systems[J]. IEEE Transactions on Power Electronics, 2009, 24(3): 654-664. [5] 陈轶涵, 龚春英, 邓翔. 一种提高中频逆变器外特性的谐振控制器建模与带宽设计[J]. 电工技术学报, 2015, 30(3): 94-102. Chen Yihan, Gong Chunying, Deng Xiang. Modeling and bandwith optimization design of resonant controller for improving external characteristic of medium frequency inverter[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 94-102. [6] Brabandere K D, Bolsens B, Driesen J. A voltage and frequency droop control method for parallel inverters[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 314-322. [7] Brabandere K D, Bolsens B, Keybus V. Model-based generation of low distortion currents in grid-coupled PWM-inverters using an LCL output filter[C]//Power Electronics Specialists Conference (PESC'04), 2004: 4616-4622. [8] Brabandere K D. Voltage and frequency droop control in low voltage grids by distributed generators with inverter front-end[D]. Belgium: KU Leuven university, 2006. [9] Pasi P, Pasi N, Niemelä M. LQG-based voltage control of the single-phase inverter for noisy envi- ronment[J]. IEEE Transactions on Power Electronics, 2008, 28(5): 314-322. [10] 鹿建成, 李啸骢, 黄维, 等. 基于SSSC和励磁协调抑制次同步振荡的线性最优控制器设计[J]. 电力系统保护与控制, 2015, 43(1): 21-27. Lu Jiancheng, Li Xiaocong, Huang Wei, et al. Linear optimal controller of static series synchronous com- pensator and excitation to suppress sub-synchronous oscillation[J]. Power System Protection and Control, 2015, 43(1): 21-27. [11] 王恒利, 付立军, 揭贵生, 等. 采用比例谐振和状态反馈的三相逆变器最优控制[J]. 西安交通大学学报, 2013, 43(8): 127-132. Wang Hengli, Fu Lijun, Jie Guisheng, et al. Optimal control of three-phase inverter based on state feed- back with proportional resonant control[J]. Journal of Xi'an Jiaotong University, 2013, 43(8): 127-132. [12] Eugene L, Kevin A, Howe D. Robust and adaptive control with aerospace applications[M]. Berlin: Springer, 2013. [13] Robert L, Williams D. Linear state-space control systems[M]. Hoboken: Wiley, 2007. [14] 董炀斌, 蒋静坪, 吴茂刚. 基于状态变换的交流伺服系统鲁棒二次最优控制方法[J]. 电工技术学报, 2005, 20(9): 82-87. Dong Yangbin, Jiang Jingping, Wu Maogang. State transformation based on robust quadratic optimal control method for AC servo system[J]. Transactions of China Electrotechnical Society, 2005, 20(9): 82-87. [15] 胡金高, 程国扬. 鲁棒近似时间最优控制及其在电机伺服系统的应用[J]. 电工技术学报, 2014, 29(7): 163-169. Hu Jingao, Cheng Guoyang. Robust proximate time-optimal control with application to a motor servo system[J]. Transactions of China Electro- technical Society, 2014, 29(7): 163-169. [16] Keyhani A, Marwali M N, Dai M. Integration of green and renewable energy in electric power systems[M]. Hoboken: Wiley, 2010. [17] Davison E J, Pasi N, Niemelä M. LQG-based voltage control of the single-phase inverter for noisy environment the robust control of a servomechanism problem for linear time-invariant multivariable systems[J]. IEEE Transactions on Power Electronics, 1976, 26(1): 25-34. [18] Witold P. Robust control design: an optimal control approach[M]. Hoboken: Wiley, 2007. [19] 张银锋, 聂子玲, 朱俊杰, 等. 基于 H ∞ 混合灵敏度方法的中频逆变器设计[J]. 海军工程大学学报, 2016, 28(1): 25-29. Zhang Yinfeng, Nie Ziling, Zhu Junjie, et al. Medium frequency inverter design based on H -infinity mixed sensitivity method[J]. Journal of Naval University of Engineering, 2016, 28(1): 25-29. [20] Zhu Junjie, Nie Ziling, Wu Yanhao. Harmonic analysis and sectional suppression of 400Hz solid- state power supply[C]//IEEE 39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 2013: 802-807. |
|
|
|