|
|
The Phase-Shifted Control Method of Isolated Bidirectional DC-DC Converter with Minimum Backflow Power |
Yu De, Fu Chao, Wang Yi, Wang Yanxu, Yang Zheming |
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources North China Electric Power University Baoding 071003 China |
|
|
Abstract Reducing backflow power of isolated bidirectional dc-dc converter (IBDC) can improve the transmission efficiency. It is important to extend the application of IBDC in dc power distribution network. Firstly, the principles of dual-phase-shift control and backflow power production are analyzed. Then the mathematical models of the transmission power, power supply side backflow and load side backflow are established. Accordingly, a minimum backflow power phase shift control method is proposed to decrease current stress and improve efficiency. Under the same power transfer capability, the proposed method can control operating points to realize the minimum backflow power compared with the dual-phase-shift control. Finally, by using a 2kW IBDC porotype, the experimental results show that the proposed control method can achieve the minimum backflow power operation in different conditions, which can effectively reduce the current stress and power loss and improve efficiency.
|
Published: 16 January 2018
|
|
Fund:国家重点研发计划资助项目(2016YFB0900203) |
Corresponding Authors:
付 超 男,1979年生,博士,讲师,研究方向为电力电子技术在电力系统中应用。E-mail: fuchao@ncepu.edu.cn
|
|
|
|
[1] 江道灼, 郑欢. 直流配电网研究现状与展望[J]. 电力系统自动化, 2012, 36(8): 98-104. Jiang Daozhuo, Zheng Huan. Research status and developing prospect of DC distribution network[J]. Automation of Electric Power Systems, 2012, 36(8): 98-104. [2] 宋强, 赵彪, 刘文华. 智能直流配电网研究综述[J]. 中国电机工程学报, 2013, 33(25): 9-20. Song Qiang, Zhao Biao, Liu Wenhua. An overview of research on smart DC distribution power network[J]. Proceedings of the CSEE, 2013, 33(25): 9-20. [3] 周逢权, 黄伟. 直流配电网系统关键技术探讨[J]. 电力系统保护与控制[J]. 电力系统保护与控制, 2014, 42(22): 62-67. Zhou Fengquan, Huang Wei. Study on the key technology of DC distribution power network[J]. Power System Protection and Control, 2014, 42(22): 62-67. [4] 唐志军, 邹贵彬, 高厚磊, 等. 含分布式电源的智能配电网保护控制方案[J]. 电力系统保护与控制, 2014, 42(8): 9-14. Tang Zhijun, Zou Guibin, Gao Houlei, et al. Protection and control scheme for smart distribution grid with distributed resource[J]. Power System Pro- tection and Control, 2014, 42(8): 9-14. [5] Pereda J, Dixon J. High-frequency link a solution for using only one DC source in asymmetric cascaded multilevel inverters[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 3884-3892. [6] Alex H, Mariesa L C, Gerald T H. The future renewable electric energy delivery and management system the energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148. [7] Chen W, Rong P, Lu Z Y. Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss[J]. IEEE Transa- ctions on Industrial Electronics, 2010, 57(9): 3075-3086. [8] 赵彪, 宋强, 刘文华, 等. 用于柔性直流配电的高频链直流固态变压器[J]. 中国电机工程学报, 2014, 25: 4295-4303. Zhao Biao, Song Qiang, Liu Wenhua, et al. High- frequency-link DC solid state transformers for flexible DC distribution[J]. Proceedings of the CSEE, 2014, 34(25): 4295-4303. [9] Zhao B, Yu Q, Leng Z, et al. Switched Z-source isolated bidirectional DC-DC converter and its phase- shifting shoot-through bivariate coordinated control strategy[J]. IEEE Transactions on Industrial Elec- tronics, 2012, 59(12): 4657-4670. [10] Shi J, Gou W, Yuan H, et al. Research on voltage and power balance control for cascaded modular solid- state transformer[J]. IEEE Transactions on Power Electronics, 2011, 26(4): 1154-1166. [11] Akagi H, Kitada R. Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters[J]. IEEE Transactions on Power Electronics, 2011, 26(9): 2457-2464. [12] Tan N M L, Abe T, Akagi H. Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system[J]. IEEE Transactions on Power Electronics, 2012, 27(3): 1237-1248. [13] 师长立, 唐西胜, 李宁宁, 等. 基于全桥隔离双向变换器的直流变换技术[J]. 电工技术学报, 2016, 31(2): 121-127. Shi Changli, Tang Xisheng, Li Ningning, et al. DC changing technologies based on dual-active-bridge converter[J]. Transactions of China Electrotechnical Society, 2016, 31(2): 121-127. [14] Inoue S, Akagi H. A bidirectional isolated DC-DC converter as a core circuit of the next-generation medium-voltage power conversion system[J]. IEEE Transactions on Power systems, 2007, 22(2): 535-542. [15] Inoue S, Akagi H. A bidirectional DC-DC converter for an energy storage system with galvanic isolation[J]. IEEE Transactions on Power Systems, 2007, 22(6): 2299-2306. [16] 王聪, 沙广林, 王俊, 等. 基于双重移相控制的双有源桥DC-DC变换器的软开关[J]. 电工技术学报, 2015, 30(12): 106-113. Wang Cong, Sha Guanglin, Wang Jun, et al. The analysis of zero voltage switching dual active bridge DC-DC converters based on dual-phase-shifting control[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 106-113. [17] Zhao Biao, Yu Qingguang, Sun Weixin. Extended- phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid[J]. IEEE Transactions on Power Systems, 2012, 27(11): 4667-4680. [18] Zhao Biao, Song Qiang, Liu Wenhua. Power characterization of isolated bidirectional dual-active- bridge DC-DC converter with dual-phase-shift control[J]. IEEE Transactions on Power Electronics, 2012, 27(9): 4172-4176. [19] Krismer F, Kolar J W. Accurate small-signal model for the digital control of an automotive bidirectional dual active bridge[J]. IEEE Transactions on Power Systems, 2009, 24(12): 2756-2768. [20] Krismer F, Kolar J W. Efficiency-optimized high- current dual active bridge converter for automotive applications[J]. IEEE Transactions on Industrial Electronics, 2012, 59(7): 2745-2760. [21] Kheraluwala M N, Gascoigne R W, Divan D M, et al. Performance characterization of a high-power dual active bridge DC-to-DC converter[J]. IEEE Transa- ctions on Industry Applications, 1992, 28(6): 1294-1301. [22] 许正平, 李俊. 双向全桥DC-DC变换器高效能控制研究与实现[J]. 电力系统保护与控制, 2016, 44(2): 140-146. Xu Zhengping, Li Jun. Research and implementation of bidirectional full bridge DC-DC converter with high-efficiency control[J]. Power System Protection and Control, 2016, 44(2): 140-146. [23] Zhao Biao, Song Qiang, Liu Wenhua, et al. Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system[J]. IEEE Transactions on Power Systems, 2014, 29(8): 4091-4106. [24] 赵彪, 于庆广, 孙伟欣. 双重移相控制的双向全桥DC-DC变换器及其功率回流特性分析[J]. 中国电机工程学报, 2012, 32(12): 43-50. Zhao Biao, Yu Qingguang, Sun Weixin. Bi- directional full-bridge DC-DC converters with dual- phase-shifting control and its backflow power characteristic analysis[J]. Proceedings of the CSEE, 2012, 32(12): 43-50. [25] 程红, 高巧梅, 朱锦标, 等. 基于双重移相控制的双向全桥DC-DC变换器动态建模与最小回流功率控制[J]. 电工技术学报, 2014, 29(3): 245-253. Cheng Hong, Gao Qiaomei, Zhu Jinbiao, et al. Dynamic modeling and minimum backflow power controlling of the bi-directional full-bridge DC-DC converters based on dual-phase-shifting control[J]. Transactions of China Electrotechnical Society, 2014, 29(3): 245-253. [26] Bai Hua, Mi C. Eliminate reactive power and increase system efficiency of isolated bidirectional dual- active-bridge DC-DC converters using novel dual- phase-shift control[J]. IEEE Transactions on Power Electronics, 2008, 23(6): 2905-2914. [27] Bai Hua, Nie Ziling, Mi C. Experimental comparison of traditional phase-shift, dual-phase-shift, and model- based control of isolated bidirectional DC-DC converters[J]. IEEE Transactions on Power Elec- tronics, 2010, 25(6): 1444-1449. [28] Zhao Biao, Song Qiang, Liu Wenhua. Efficiency characterization and optimization of isolated bidi- rectional DC-DC converter based on dual-phase-shift control for DC distribution application[J]. IEEE Transa- ctions on Power Electronics, 2013, 28(4): 1711-1727. |
|
|
|