|
|
Torque Maximization about Electric Vehicle Induction Motor at Low Speed |
Liu Qing1, Liu Heping1, Liu Ping2, Guo Qiang3, Miao Yiru1 |
1. State Key Laboratory of Power Transmission Equipment & System Security and New Technology Chongqing University Chongqing 400044 China; 2. College of Electrical and Information Engineering Hunan University Changsha 410082 China; 3. School of Electrical and Electronic Engineering Chongqing University of Technology Chongqing 400050 China |
|
|
Abstract Induction motor for electric vehicle (EV) often encounters low speed and heavy load conditions such as climbing slope. In such cases, the maximum torque constrained by inverter current is very important, especially for low voltage and large current induction motor. From steady circuit of induction motor a current constrained torque maximization model was constructed based on a nonlinear magnetizing inductance. Analysis of this model indicates that the optimization problem can be simplified into a one-dimension searching problem. A classical searching method was used to get the solutions in low speed range. The calculation results of an actual induction motor and theoretical analysis show that the torque, teeth flux density and slip frequency of all the torque maximization points nearly keep constant, and the fairly saturated magnetic field results in severe nonlinearity. When the nonlinear magnetizing inductance is applied to an improved space vector pulse width modulation (SVPWM) control system, the maximum torque under large current constrained condition can be implemented. The simulation and experimental results verify the optimization model, analysis results and the improved SVPWM.
|
Published: 16 January 2018
|
|
Fund:国家自然科学基金资助项目(51507055) |
Corresponding Authors:
刘 庆 男,1972年生,博士,高级工程师,主要研究方向为电机设计及电机控制。E-mail: qliu777@sina.com
|
|
|
|
[1] 欧阳明高. 我国节能与新能源汽车发展战略与对策[J]. 汽车工程, 2006, 28(4): 317-321. Ouyang Minggao. Chinese development strategy and countermeasure of energy-saving and new energy automotive[J]. Automotive Engineering, 2006, 28(4): 317-321. [2] Chang L. Comparison of AC drives for electric vehicles—a report on experts' opinion survey[J]. IEEE AES Systems Magazine, 1994, 9(8): 7-10. [3] 王毅, 马洪飞, 赵凯岐, 等. 电动车用感应电机磁场定向矢量控制研究[J]. 中国电机工程学报, 2005, 25(11): 113-117. Wang Yi, Ma Hongfei, Zhao Kaiqi, et al. Field- oriented vector control of induction motor for electric vehicles[J]. Proceedings of the CSEE, 2005, 25(11): 113-117. [4] Guan Hui, Zhao Zhengming, Meng Shuo, et al. Optimal design for inverter-driven induction motors[J]. Proceedings of the CSEE, 2004, 24(7): 194-199. [5] 赵云, 刘洋, 李叶松. 实现感应电机宽范围最大转矩控制的电流优化策略[J]. 中国电机工程学报, 2012, 32 (2): 67-74. Zhao Yun, Liu Yang, Li Yesong. Implementation of current optimizing strategy for maximum torque control of induction machines over a wide speed range[J]. Proceedings of the CSEE, 2012, 32(2): 67-74. [6] Cacciato M, Consoli A, Scarcella G, et al. Indirect maximum torque per ampere control of induction motor drives[C]//Proceedings of Power Electronics and Applications 2007, Aalborg, Denmark, 2007: 1-10. [7] Cacciato M, Consoli A, Scarcella G, et al. Efficiency optimization techniques via constant optimal slip control of induction motor drives[C]//Proceedings of SPEEDAM, 2006, Taormina, Italy, 2006: 33-38. [8] 赵雷廷, 刁利军, 张哲, 等. 低开关频率下异步电机电流环的数字控制[J]. 中国电机工程学报, 2014, 34 (21): 3456-3466. Zhao Leiting, Diao Lijun, Zhang Zhe, et al. Discrete- time current controller for induction motors at low switching frequency[J]. Proceedings of the CSEE, 2014, 34(21): 3456-3466. [9] 韦克康, 周明磊, 郑琼林, 等. 基于复矢量的异步电机电流环数字控制[J]. 电工技术学报, 2011, 26(6): 88-94. Wei Kekang, Zhou Minglei, Trillion Q. Zheng, et al. Discrete-time current controller for induction motors based on complex vector[J]. Transactions of China Electrotechnical Society, 2011, 26(6): 88-94. [10] 卢峥, 欧阳红林, 孟超, 等. 多电平双移30°永磁同步电机的矢量控制系统[J]. 电工技术学报, 2016, 31(22): 45-56. Lu Zheng, Ouyang Honglin, Meng Chao, et al. Vector control system of multilevel inverter double star winding shifted by 30° permanent magnet synch- ronous motor[J]. Transactions of China Electro- technical Society, 2016, 31(22): 45-56. [11] 张立伟, 黄美婷, 崔霆锐. 考虑铁损的电动汽车用异步电机转子时间常数在线辨识方案[J]. 电工技术学报, 2015, 30(14): 146-152. Zhang Liwei, Huang Meiting, Cui Tingrui. A scheme for rotor time constant online identification of asynchronous motor considering iron loss in electric vehicle[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 146-152. [12] 周华伟, 温旭辉, 赵峰, 等. 一种抑制VSI零电流箝位效应的死区补偿方法[J]. 电机与控制学报, 2011, 15(1): 26-32. Zhou Huawei, Wen Xuhui, Zhao Feng, et al. Dead- time compensation method of restraining zero-current clamping effects for VSI[J]. Electric Machines and Control, 2011, 15(1): 26-32. [13] Leggate D, Kerkman R. Pulse-based dead-time compensator for PWM voltage inverters[J]. IEEE Transactions on Industrial Electronics, 1997, 44(2): 191-197. [14] Kioskeridis I, Margaris N. Loss minimization in scalar-controlled induction motor drives with search controllers[J]. IEEE Transactions on Power Elec- tronics, 1996, 11(2): 213-220. [15] Wasynczuk O, Sudhoff S D, Hansen I G, et al. A maximum torque per ampere control strategy for induction motor drives[J]. IEEE Transactions on Energy Conversion, 1998, 13(2): 163-169. [16] Suetake M, da Silva I N, Goedtel A. Embedded DSP-based compact fuzzy system and its application for induction-motor V/f speed control[J]. IEEE Transactions on Industrial Electronics, 2011, 58(3): 750-760. [17] Consonli A, Scarcella G, Scelba G, et al. Energy efficient sensorless scalar control for full speed operating range IM drives[C]//Proceedings of Power Electronics and Applications, Birmingham, UK, 2011: 1-10. [18] 王琛琛, 齐龙, 苟立峰, 等. 基于无速度传感器的异步电机并联加权矢量控制[J]. 电工技术学报, 2015, 30(10): 131-137. Wang Chenchen, Qi Long, Gou Lifeng, et al. Speed- sensorless weighted vector control of parallel connected induction motors drive[J]. Transactions of China Electrotechnical Society, 2015, 30(10): 131-137. [19] Masao Fukushima. 非线性最优化基础[M]. 林贵华, 译. 北京: 科学出版社, 2011. [20] 王成元, 夏加宽, 孙宜标. 现代电机控制技术[M]. 北京: 机械工业出版社, 2008. [21] 李隆年, 王宝玲, 周汝潢. 电机设计[M]. 北京: 清华大学出版社, 1992. [22] 程福秀, 林金铭. 现代电机设计[M]. 北京: 机械工业出版社, 1993. [23] 何坚勇. 最优化方法[M]. 北京: 清华大学出版社, 2007. |
|
|
|