|
|
Simulation of Contamination Deposition on Typical Shed Porcelain and Composite Insulators |
Lü Yukun1, Zhao Weiping1, Pang Guanglu2, Li Zhichao3, Wei Shaoke4 |
1. School of Energy Power and Mechanical Engineering North China Electric Power University Baoding 071000 China; 2. City of Wisdom (Beijing) Planning and Design Institute Co. Ltd Beijing 100835 China; 3. Taicang Power Station of China Huaneng Group Taicang 215424 China; 4. Inner Mongolia Kang Yuan Power Engineering Supervision Co. Ltd Hohhot 010070 China |
|
|
Abstract The contamination deposition characteristics of typical shed porcelain and composite insulators can be used in the insulator selection. Using multi-physics coupling software, numerical simulations on the contamination features of porcelain bell jar, porcelain three umbrella, and composite insulators in a wind tunnel were conducted, and the simulated results were compared with the tested results. The comparison shows that the results with respect to the deposit amount are at the same order of magnitude and present a similar tendency with DC voltage variation. Therefore, the rationality of the present simulation method is verified. Based on the aforementioned method, a simulation investigation of the natural contamination deposition on the above three insulators was performed to examine the effects of wind speed, particle size, and voltage type. The results indicate that under the same conditions, the deposit amount on the composite insulator is greater than those of both the porcelain bell jar and porcelain three umbrella insulators. It is found that under DC voltage, the growth rate of the pollution amount on composite insulator is greater than those of two other insulators, and it first decreases and then increases with increasing particle size. At the same wind speed, the influence of the voltage type on the insulator contamination increases as the particle size increases. In addition, the deposit amount under AC voltage and unelectrified state is less than that under DC voltage.
|
Received: 26 September 2016
Published: 16 January 2018
|
|
|
|
|
[1] 汪沨, 廖平军, 黄俊, 等. 含污秽薄层的高压复合绝缘子表面电场计算新方法[J]. 电工技术学报, 2016, 31(10): 77-84. Wang Feng, Liao Pingjun, Huang Jun, et al. Novel method for electric field calculation considering the thickness of contaminant layer on the surface of composite insulator[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 77-84. [2] 关志成. 绝缘子及输变电设备外绝缘[M]. 北京: 清华大学出版社, 2006. [3] 李恒真, 刘刚, 李立涅. 广州地区线路盘式防污型玻璃绝缘子的自然积污规律[J]. 中国电机工程学报, 2011, 31(25): 118-124. Li Hengzhen, Liu Gang, Li Linie. Natural contamination deposit law of line disc anti-contamination glass insulator in Guangzhou area[J]. Proceedings of the CSEE, 2011, 31(25): 118-124. [4] 张志劲, 张东东, 刘小欢, 等. 污秽成分对LXY4—160 绝缘子串交流闪络特性的影响[J]. 电工技术学报, 2014, 29(4): 298-305. Zhang Zhijin, Zhang Dongdong, Liu Xiaohuan, et al. Effect of pollution compositions on the ac flashover performance of LXY4-160 suspension glass insulator string[J]. Transactions of China Electrotechnical Society, 2014, 29(4): 298-305. [5] 胡长猛, 谢从珍, 袁超, 等. 雾霾对输变电设备外绝缘特性影响机理综述[J]. 电力系统保护与控制, 2015, 43(16): 147-154. Hu Changmeng, Xie Congzhen, Yuan Chao, et al. A review on influence mechanism of haze on external insulation characteristics of transmission and transformation equipment[J]. Power System Protection and Control, 2015, 43(16): 147-154. [6] Armstrong M J, Ross C A H. Implications of distribution voltage configuration on TeDP electrical systems[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6): 501-508. [7] 高峰, 卢明, 王璨, 等. 基于灰关联算法的雾霾对不带电悬式绝缘子自然积污影响的研究[J]. 电瓷避雷器, 2016(3): 11-16. Gao Feng, Lu Ming, Wang Can, et al. Study on the influence of fog-haze on natural contamination of deenergized suspension insulator based on grey correlation analysis[J]. Insulators and Surge Arresters, 2016(3): 11-16. [8] 谷裕, 阳林, 张福增, 等. 高海拔地区特高压换流站大尺寸复合支柱绝缘子直流污闪特性[J]. 电工技术学报, 2016, 31(10): 93-101. Gu Yu, Yang Lin, Zhang Fuzeng, et al. DC pollution flashover performance of ultra high voltage convert stations large-size composite post insulators at high altitude areas[J]. Transactions of China Electrotechnical Society, 2016, 31(10): 93-101. [9] 吕玉坤, 李国超, 卫少科, 等. 直流复合绝缘子积污特性的数值模拟研究[J]. 华北电力大学学报(自然科学版), 2015, 42(4): 46-51. Lü Yukun, Li Guochao, Wei Shaoke, et al. Numerical simulation study of the contamination characteristics of composite insulators under DC voltage[J]. Journal of North China Electric Power University (Natural Science Edition), 2015, 42(4): 46-51. [10] 王少华, 方玉群, 胡旭光, 等. 自然积污绝缘子等值盐密的累积规律[J]. 绝缘材料, 2011, 44(4): 52-54. Wang Shaohua, Fang Yuqun, Hu Xuguang, et al. Accumulation rule of ESDD of insulators covered with natural pollution[J]. Insulating Materials, 2011, 44(4): 52-54. [11] 钱进, 柯磊, 张东辉, 等. ±500 kV直流输电线路自然积污规律分析研究[J]. 电瓷避雷器, 2015(4): 25-31. Qian Jin, Ke Lei, Zhang Donghui, et al. Analysis of the contamination of natural law on ±500 kV DC transmission line[J]. Insulators and Surge Arresters, 2015(4): 25-31. [12] 王晶, 陈林华, 刘宇, 等. 电场对复合绝缘子积污特性影响的探究[J]. 高电压技术, 2011, 37(3): 585-593. Wang Jing, Chen Linhua, Liu Yu, et al. Effect of the electric field on the contamination accumulation characteristic of the insulators[J]. High Voltage Engineering, 2011, 37(3): 585-593. [13] 王少华, 胡文堂, 龚坚刚, 等. 浙江电网架空输电线路绝缘子串的自然积污特性[J]. 高电压技术, 2014, 40(4): 1002-1009. Wang Shaohua, Hu Wentang, Gong Jiangang, et al. Natural pollution accumulation characteristics of overhead transmission line insulator strings of Zhejiang electric power grid[J]. High Voltage Engineering, 2014, 40(4): 1002-1009. [14] Ravelomanantsoa N, Farzaneh M, Chisholm W A. Laboratory investigation of the HV insulator contamination process under winter conditions[C]// 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, 2008. [15] Ravelomanantsoa N, Farzaneh M, Chisholm W A. A simulation method for winter pollution contamination of HV insulators[C]//Electrical Insulation Conference (EIC), IEEE, Annapolis, Maryland, 2011: 373-376. [16] Lü Yukun, Li Jingang, Zhang Xuemei, et al. Simulation study on pollution accumulation characteristics of XP13-160 porcelain suspension disc insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23(4): 2196-2206. [17] 张志劲, 黄海舟, 蒋兴良, 等. 基于流体力学的不同型式绝缘子覆冰增长过程分析[J]. 电工技术学报, 2012, 27(10): 35-43. Zhang Zhijin, Huang Haizhou, Jiang Xingliang, et al. Analysis of ice growth on different type insulators based on fluid dynamics[J]. Transactions of China Electrotechnical Society, 2012, 27(10): 35-43. [18] 王黎明, 刘霆, 梅红伟, 等. 基于计算流体力学的支柱绝缘子积污特性研究[J]. 高电压技术, 2015, 41(8): 2741-2749. Wang Liming, Liu Ting, Mei Hongwei, et al. Research on contamination deposition characteristics of post insulator based on computational fluid dynamics[J]. High Voltage Engineering, 2015, 41(8): 2741-2749. [19] 屠幼萍, 孙佑飞, 彭庆军, 等. 雾霾环境下自然积污绝缘子的污秽颗粒粒径分布特性[J]. 高电压技术, 2014, 40(11): 3318-3326. Tu Youping, Sun Youfei, Peng Qingjun, et al. Particle size distribution characteristics of naturally polluted insulators under the fog-haze environment[J]. High Voltage Engineering, 2014, 40(11): 3318-3326. [20] 王晶, 李燕, 梁曦东, 等. 利用原子力显微镜探究污秽颗粒在绝缘子表面的粘附力[J]. 高电压技术, 2013, 39(6): 1352-1359. Wang Jing, Li Yan, Liang Xidong, et al. Research of adhesion force between dust particles and insulator surface using atomic force microscope[J]. High Voltage Engineering, 2013, 39(6): 1352-1359. |
|
|
|