[1] 冯奕, 颜建虎. 基于飞轮储能的风力发电系统仿真[J]. 电力系统保护与控制, 2016, 44(20): 94-98. Feng Yi, Yan Jianhu. Simulation of wind energy generation system with flywheel storage system[J]. Power System Protection and Control, 2016, 44(20): 94-98.
[2] 赵晗彤, 张建成. 基于滑模控制的飞轮储能稳定光伏微网离网运行母线电压策略的研究[J]. 电力系统保护与控制, 2016, 44(16): 36-42. Zhao Hantong, Zhang Jiancheng. Research on bus voltage control strategy of off-grid PV microgrid with flywheelenergy storage system based on sliding mode control[J]. Power System Protection and Control, 2016, 44(16): 36-42.
[3] 张翔, 杨家强, 王萌. 一种采用负载电流和转速补偿的改进型飞轮储能系统放电控制算法[J]. 电工技术学报, 2015, 30(14): 6-17. Zhang Xiang, Yang Jiaqiang, Wang Meng. An improved discharge control strategy withload current and rotor speed compensationfor flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2015, 30(14): 6-17.
[4] 袁绍军,白雪松,潘立巍, 等. 微电网用飞轮储能支承系统多目标控制[J].电工技术学报, 2015, 30(增刊1): 406-411. Yuan Shaojun, Bai Xuesong, Pan Liwei, et al. A multi-objective control algorithm for micro grid with flywheelenergy storage supporting system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 406-411.
[5] 邱文祥, 李大兴, 夏革非, 等. 一种新型低成本飞轮储能用永磁偏置磁轴承[J]. 电工技术学报, 2015, 30(增刊1): 58-62. Qiu Wenxiang, Li Daxing, Xia Gefei, et al. A low cost permanent magnet biased bearing used in flywheel energy storage system[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 58-62.
[6] 吴磊涛, 王东, 苏振中, 等. 考虑定子外壳漏磁的同极式永磁偏置径向磁轴承磁路模型[J]. 电工技术学报, 2017, 32(11): 118-125. Wu Leitao, Wang Dong, Su Zhenzhong, et al. Leakage magnetic field and precise magnetic circuit model of the permanent magnetic biased radial magnetic bearing[J]. Transactions of China Electrotechnical Society, 2017, 32(11): 118-125.
[7] AhrensM, Kucera L, Larsonneur R. Performance of a magnetically suspended flywheel energy storage device[J]. IEEE Transactions on Control System Technology, 1996, 4(5): 494-502.
[8] Zhang Kai, Zhao Lei, Zhao Hongbin. Research on control of flywheel suspended by active magnetic bearing system with significant gyroscopic effects[J]. Chinese Journal of Mechanical Engineering, 2004, 17(1): 63-66.
[9] Shimane T, Nagai B, Okada Y. High-speed gyroscopic instability and cross-feedback compensation of a digitally controlled magnetic bearing[J]. Transactions of the Japan Society of Mechanical Engineers, Part C, 1990, 52(8): 2079-2084.
[10] Okada Y, Nagai B, Shimane T. Cross-feedback stabilization of the digitally controlled magnetic bearing[J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1992, 114(1): 54-59.
[11] 沈钺, 孙岩桦, 王世琥.磁悬浮飞轮系统陀螺效应的抑制[J]. 西安交通大学学报, 2003, 37(11): 1105-1109. Shen Yue, Sun Yanhua, Wang Shihu. Reduction of gyroscopic effect of a magnetic bearing-supported flywheel system[J]. Journal of Xi'An JiaoTong University, 2003, 37(11): 1105-1109.
[12] Comanescu M, Xu Longya, Batzel T D. Decoupledcurrent control of sensorless induction-motor drives by integral sliding mode[J]. IEEE Transactions on Industrial Electronics, 2008, 55(11): 3836-3845.
[13] Liao Y X, She J H, Wu Min. Integrated hybrid-PSO and fuzzy-NN decoupling control for temperature of reheating furnace[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2704-2714.
[14] Wu Min, Yan Jin, She J H, et al. Intelligent decoupling control of gas collection process of multiple asymmetric coke ovens[J]. IEEE Transactions on Industrial Electronics, 2009, 56(7): 2782-2792.
[15] Trumper D L, Olson S M, Subrahmanyan P K. Linearizing control of magnetic suspension systems[J]. IEEE Transactions on Control Systems Technology, 1997, 5(4): 427-438.
[16] Lindlau J D, Knospe C R. Feedback linearization of an active magnetic bearing with voltage control[J]. IEEE Transactions on Control Systems Technology, 2002, 10(1): 21-31.
[17] Chen Min, Knospe C R. Feedback linearization of active magnetic bearings: current-mode implementation[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(6): 632-639.
[18] Yang Zuoxing, Zhao Lei, Zhao Hongbin. Global linearization and microsynthesis for high-speed grinding spindle with active magnetic bearings[J]. IEEE Transactions on Magnetics, 2002, 38(1): 250-256.
[19] Li Lichuan, Shinshi T, Shimokohbe A. Asymptotically exact linearization for active magnetic bearing actuators in voltage control configuration[J]. IEEE Transactions on Control Systems Technology, 2003, 11(2): 185-195.
[20] Hsu C T, Chen S T. Exact linearization of a voltage-controlled 3-pole active magnetic bearing system[J]. IEEE Transactions on Control Systems Technology, 2002, 10(4): 618-625.
[21] Chen S L,Weng C C. Robust control of a voltage-controlled three-pole active magnetic bearing system[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(3): 381-388.
[22] 曹建荣,虞烈,谢友柏. 主动磁悬浮轴承的解耦控制[J]. 西安交通大学学报, 1999, 33(12): 44-48. Cao Jianrong, Yu Lie, Xie Youbo. Decoupling control for active magnetic bearing[J]. Journal of Xi'an Jiaotong University, 1999, 33(12): 44-48.
[23] Fang Jiancheng, Ren Yuan. High-precision control for a single-gimbal magnetically suspended control moment gyro based on inverse system method[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4331-4342.
[24] Fang Jiancheng, Ren Yuan. Decoupling control of magnetically suspended rotor system in control moment gyros based on an inverse system method[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 1133-1144.
[25] Wen Tong, Fang Jiancheng. A feedback linearization control for the nonlinear 5-DOF flywheel suspended by the permanent magnet biased hybrid magnetic bearings[J]. Acta Astronautica, 2012, 79(2): 131-139.
[26] Duan G R, Howe D. Robust magnetic bearing control via eigen-structure assignment dynamical compensation[J]. IEEE Transactions on Control Systems Technology, 2003, 11(2): 204-215.
[27] Noshadi A, Shi J, Lee W S, et al. System identification and robust control of multi-input multi-output active magnetic bearing systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1227-1239.
[28] Su Y X, Zheng Chunhong, Mueller P C, et al. A simple improved velocity estimation for low-speed regions based on position measurements only[J]. IEEE Transactions on Control Systems Technology, 2006, 14(5): 937-942. |