|
|
A Three-Element Inductive Power Transfer System with High Misalignment Tolerance |
Feng Hao1, Cai Tao1, Duan Shanxu1, Zhao Jinbo2, Zhang Xiaoming1 |
1. State Key Laboratory of Advanced Electromagnetic Engineering and Technology Huazhong University of Science and Technology Wuhan 430074 Chinam. 2. Laboratory of Low-Frequency Electro-Magnetic Communication Technology The 722th Research Institution CSIC Wuhan 430205 China |
|
|
Abstract Conventional LCL based inductive power transfer systems realizes output voltage gain independent of load condition, while its power transfer characteristic is easily influenced by coupling factor and thus unsuitable for dynamic charging application. In this paper, an LCL based compensation topology with high tolerance to misalignment is proposed. From the perspective of smoothing voltage gain, the rated voltage gain and output impedance are quantified as function of coupling factor and passive elements parameters. The three-element compensation network is fabricated by adding one degree of design freedom. The voltage gain characteristic indicates that the proposed topology can keep relatively constant output under wide fluctuation of coupling condition. Finally, a prototype is built. Experiment results show good agreement with theoretical analysis.
|
Received: 28 September 2016
Published: 14 November 2017
|
|
|
|
|
[1] 郭彦杰, 王丽芳, 朱庆伟, 等. 基于非正弦输入的电动汽车无线充电系统功率与效率特性研究[J]. 电工技术学报, 2015, 30(增刊1): 204-208. Guo Yanjie, Wang Lifang, Zhu Qingwei, et al. Power and efficiency characteristic analysis of EV wireless- charging system based on non-sinusoidal input[J]. Transactions of China Electrotechnical Society, 2015, 30(S1): 204-208. [2] 陈琛, 黄学良, 谭林林, 等. 电动汽车无线充电时的电磁环境及安全评估[J]. 电工技术学报, 2015, 30(19): 61-67. Chen Chen, Huang Xueliang, Tan Linlin, et al. Elect- romagnetic environment and security evaluation for wireless charging of electric vehicles[J]. Transactions of China Electrotechnical Society, 2015, 30(19): 61-67. [3] Bosshard R, Kolar J W, Muhlethaler J, et al. Mode- ling and η-α pareto optimization of inductive power transfer coils forelectric vehicles[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2015, 3(1): 50-64. [4] 程时杰, 陈小良, 王军华, 等. 无线输电关键技术及其应用[J]. 电工技术学报, 2015, 30(19): 68-84. Cheng Shijie, Chen Xiaoliang, Wang Junhua, et al. Key technologies and applications of wireless power transmission[J]. Transactions of China Electro- technical Society, 2015, 30(19): 68-84. [5] 赵锦波, 蔡涛, 段善旭, 等. 适用于分段式动态无线充电的接力方法[J]. 电力系统自动化, 2016, 40(16): 64-70. Zhao Jinbo, Cai Tao, Duan Shanxu, et al. A relay control method for sectional track-based dynamic WPT system[J]. Automation of Electric Power Systems, 2016, 40(16): 64-70. [6] Diekhans T, De Doncker R W. A dual-side controlled inductive power transfer system optimized for large coupling factor variations and partial load[J]. IEEE Transactions on Power Electronics, 2015, 30(11): 6320-6328. [7] Zheng C, Ma H, Lai J. Design considerations to reduce gap variation and misalignment effects for the inductive power transfer system[J]. IEEE Transac- tions on Power Electronics, 2015, 30(11): 6108-6119. [8] 程鹏天, 王健强, 杜秀. 电动汽车感应耦合充电系统一种新型拓扑的研究[J]. 电工技术学报, 2013, 28(2): 86-91. Cheng Pengtian, Wang Jianqiang, Du Xiu. Inves- tigation of a novel topology for inductively coupled charging system in electric vehicles[J]. Transactions of China Electrotechnical Society, 2013, 28(2): 86-91. [9] Zhao J, Cai T, Duan S, et al. A general design method of primary compensation network for dynamic WPT system maintaining stable transmission power[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8343-8358. [10] 苏玉刚, 唐春森, 孙跃, 等. 非接触供电系统多负载自适应技术[J]. 电工技术学报, 2009, 24(1): 153- 157. Su Yugang, Tang Chunsen, Sun Yue, et al. Load adaptive technology of contactless power transfer system[J]. Transactions of China Electrotechnical Society, 2009, 24(1): 153-157. [11] 侯佳, 陈乾宏, 严开沁, 等. 新型S/SP补偿的非接触谐振变换器分析与设计[J]. 中国电机工程学报, 2013, 33(33): 1-8. Hou Jia, Chen Qianhong, Yan Kaiqin, et al. Analysis and control of S/SP compensation contactless reso- nant converters[J]. Proceedings of the CSEE, 2013, 33(33): 1-8. [12] Budhia M, Boys J T, Covic G A, et al. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems[J]. IEEE Transactions on Industrial Electronics, 2013, 60(1): 318-328. [13] Pantic Z, Bai Sanzhong, Lukic S. ZCS LCC- compensated resonant inverter for inductive power transfer application[J]. IEEE Transactions on Indus- trial Electronics, 2011, 58(8): 3500-3510. [14] 杨民生, 王耀南, 欧阳红林. 新型恒定一次侧电流无接触电能传输系统的建模与优化[J]. 中国电机工程学报, 2009, 29(4): 34-40. Yang Minsheng, Wang Yaonan, Ouyang Honglin. Modeling and optimizing of a new contactless ICPT system with constant primary winding current[J]. Proceedings of the CSEE, 2009, 29(4): 34-40. [15] 丰昊, 蔡涛, 段善旭, 等. LCL型感应式能量传输系统的时域特性分析[J]. 中国电机工程学报, 2016, 36(18): 4938-4945. Feng Hao, Cai Tao, Duan Shanxu, et al. Time-domain analysis of LCL compensated inductive power transfer systems[J]. Proceedings of the CSEE, 2016, 36(18): 4938-4945. [16] Huh J, Lee S W, Lee W Y, et al. Narrow-width inductive power transfer system for online electrical vehicles[J]. IEEE Transactions on Power Electronics, 2011, 26(12): 3666-3679. [17] Hao Hao, Covic G A, Boys J T. An approximate dynamic model of LCL-T based inductive power transfer power supplies[J]. IEEE Transactions on Power Electronics, 2014, 29(10): 5554-5567. [18] Keeling N A, Covic G A, Boys J T. A unity-power- factor IPT pickup for high-power applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(2): 744-751. [19] Lee K, Pantic Z, Lukic S. Reflexive field containment indynamic inductive power transfer systems[J]. IEEE Transactions on Power Electronics, 2014, 9(9): 4592-4602. |
|
|
|