|
|
Full Life Cycle Economic Evaluation of Wind Power-Hydrogen Energy Storage and Coal Chemical Multi-Functional Coupling System |
Li Guojun1, Yuan Tiejiang1,4, Sun Yiqian2, Chen Guangyu3, Mei Shengwei1,4 |
1. School of Electrical Engineering Xinjiang University Urumqi 830047 China; 2. The National Network of Xinjiang Electric Power Research Institute Urumqi 830011 China; 3. State Grid Jibei Electric Power Co. Ltd Chengde Power Supply Company Chengde 067000 China; 4. State Key Laboratory of Power Systems Department of Electrical Engineering Tsinghua University Beijing 100084 China |
|
|
Abstract Aimat economic evaluation problems about Wind Power-Hydrogen Energy Storage and Coal Chemical Multi-Functional Coupling System(WP-HES&CCMFCS), this article put forward a method about full life cycle economic evaluation in Multi-Functional coupling system. Firstly, state the integration scheme of Multi-Functional coupling system; Secondly, established the optimized mathematical model of Multi-Functional coupling system by the purpose of full life cycle net profit when take as much as possible consumption of wind power and WP-HES&CCPC energy flow and stable operation of coupling system as a constraint condition, and calculated the above model for investment offer off period and full life cycle net profit. At last calculated the optimal mathematical model of given integrated architecture of Multi-Functional coupling system by taking a wind farm in a region of Xinjiang and coal chemical enterprises as the back ground, and further analyzed the changing rule of system investment offer off period and full life cycle net profit under the condition that the wind power grid scale and wind power non-electric consumption scale in the basis of prescriptive application scenarios.
|
Received: 20 August 2016
Published: 10 November 2017
|
|
|
|
|
[1] 刘畅, 吴浩, 高长征, 等. 风电消纳能力分析方法的研究[J]. 电力系统保护与控制, 2014, 42(4): 61-66. Liu Chang, Wu Hao, Gao Changzheng, et al. Study on analysis method of accommodated capacity for wind power[J]. Power System Protection and Control, 2014, 42(4): 61-66. [2] 李剑楠, 乔颖, 鲁宗相, 等. 大规模风电多尺度出力波动性的统计建模研究[J]. 电力系统保护与控制, 2012, 40(19): 7-13. Li Jiannan, Qiao Ying, Lu Zongxiang, et al. Research on statistical modeling of large-scale wind farms output fluctuations in different special and temporal scales[J]. Power System Protection and Control, 2012, 40(19): 7-13. [3] 袁铁江, 胡克林, 关宇航, 等. 风电-氢储能与煤化工多能耦合系统及其氢储能子系统的EMR建模[J]. 高电压技术, 2015, 41(7): 2156-2164. Yuan Tiejiang, Hu Kelin, Guan Yuhang, et al. Modeling on hydrogen producing progress in EMR based wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. High Voltage Engineering, 2015, 41(7): 2156-2164. [4] 蔡国伟, 孔令国, 薛宇, 等. 风氢耦合发电技术研究综述[J]. 电力系统自动化, 2014, 38(21): 127-128. Cai Guowei, Kong Lingguo, Xue Yu, et al. Overview of research on wind power coupled with hydrogen production technology[J]. Automation of Electric Power Systems, 2014, 38(21): 127-128. [5] 李铭, 刘贵利, 孙心亮. 中国大规模非并网风电与海水淡化制氢基地的链合布局[J]. 资源科学, 2008, 30(11) : 1632-1639. Li Ming, Liu Guili, Sun Xinliang. China's massive grid wind power and desalination hydrogen production base of the chain layout[J]. Resources Science, 2008, 30(11): 1632-1639. [6] 颜卓勇, 孔祥威. 非并网风电电解水制氢系统及应用研究[J]. 中国工程科学, 2015, 17(3): 30-34. Yan Zhuoyong, Kong Xiangwei. Research on non-grid-connected wind power water-electrolytic hydrogen production system and its applications[J]. Engineering Science, 2015, 17(3): 30-34. [7] 蒋东方, 高丹, 武珍, 等. 基于智能微网的氢氧联合循环与风能耦合发电系统[J]. 电力科学与工程, 2011, 27(6): 1-5. Jiang Dongfang, Gao Dan, Wu Zhen, et al. Hydrogen and oxygen combined cycle coupled with the wind power generation system based on the microgrid technology[J]. Electric Power Science Engineering, 2011, 27 (6): 1-5. [8] 蒋东方. 氢氧联合循环与风能耦合发电系统可行性分析[M]. 北京: 华北电力大学, 2012: 15-30. [9] 朴红艳, 张宇, 张存满. 东海风电场耦合氢能系统可行性研究[J]. 华东电力, 2012, 40(1): 119-122. Piao Hongyan, ZhangYu, Zhang Cunman. Feasibility research of coupling hydrogen energy system in Donghai wind farm[J]. East China Electric Power, 2012, 40(1): 119-122. [10] 方世杰, 邵志芳, 张存满. 并网型风电耦合制氢系统经济性分析[J]. 能源技术经济, 2012, 24(3): 39-43. Fang Shijie, Shao Zhifang, Zhang Cunman. Economic analysis on on-grid wind power coupling with hydrogen-production system[J]. Electric Power Technologic Economics, 2012, 24(3): 39-43. [11] 时璟丽, 高虎, 王红芳. 风电制氢经济性分析[J]. 中国能源, 2015, 37(2): 11-14. Shi Jingli, Gao Hu, Wang Hongfang. Economic analysis on wind power for hydrogen production[J]. Energy of China, 2015, 37(2): 11-14. [12] 邵迪, 胡敏, 代正华, 等. 风电/煤制天然气集成系统的研究[J]. 化学世界, 2012(增刊1): 70-71, 74. Shao Di, Hu Min, Dai Zhenghua, et al. Wind/coal gas integration system research[J]. Chemistry World, Chemistry World, 2012(S1): 70-71, 74. [13] 倪维斗, 高健, 陈贞, 等. 用风电和现代煤化工的集成系统生产“绿色”甲醇/二甲醚[J]. 中国煤炭, 2008, 34(12): 5-8. Ni Weidou, Gao Jian, Chen Zhen, et al. How to make the production of Methanol/DME 'greener'—the integration of wind power with coal chemical industry[J]. China Coal, 2008, 34(12): 5-8. [14] 杨绍斌, 王继仁, 王志宏. 中国煤制甲醇的现状及发展[J]. 洁净煤技术, 2001, 7(4): 36-40. Yang Shaobin, Wang Jiren, Wang Zhihong. Status and development of coal basis methanol in China[J]. Clean Coal Technology, 2001, 7(4): 36-40. [15] 李琼玖, 廖宗富, 漆长席, 等. 粉煤气化同水电解制氢合成甲醇工艺技术综述(上)[J]. 化肥设计, 2004, 42(6): 8-13. Li Qiongjiu, Liao Zongfu, Qi Changxi, et al. Comprehensive commentary for methanol synthesis process technology of pulverized coal gasification with hydrogen produced by water electrolysis[J]. Chemical Fertilizerdesign, 2004, 42(6): 8-13. [16] 熊雄, 杨仁刚, 叶林, 等. 电力需求侧大规模储能系统经济性评估[J]. 电工技术学报, 2013, 28(9): 224-230. Xiong Xiong, Yang Rengang, Ye Lin, et al. Economic evaluation of large-scale energy storage allocation in power demand side[J]. Transactions of China Electrotechnical Society, 2013, 28(9): 224-230. [17] 张晓辉, 闫柯柯, 卢志刚, 等. 基于碳交易的含风电系统低碳经济调度[J]. 电网技术, 2013, 37(10): 2697-2704. Zhang Xiaohui, Yan Keke, Lu Zhigang, et al. Carbon trading based low-carbon economic dispatching for power grid integrated with wind power system[J]. Power System Technology, 2013, 37(10): 2697-2704. [18] 贾亮, 曲风臣. 煤炭深加工示范项目二氧化碳等污染物排放指标研究[J]. 化学工业, 2014, 32(7): 13-17. Jia Liang, Qu Fengchen. Index of carbon dioxide and the main pollutant emissions of coal chemical industry demonstration project research[J]. Chemical Industry, 2014, 32(7): 13-17. [19] 李建. 燃料电池发电系统全过程模型的研究[D]. 保定: 华北电力大学, 2012. [20] 周涛. 基于全寿命周期的电网主设备成本分析与应用研究[D]. 北京: 华北电力大学, 2012. [21] 柳璐, 王和杰, 程浩忠, 等. 基于全寿命周期成本的电力系统经济性评估方法[J]. 电力系统自动化, 2012, 36(15): 45-50. Liu Lu, Wang Hejie, Cheng Haozhong, et al. Economic evaluation of power systems based on life cycle cost[J]. Automation of Electric Power Systems, 2012, 36(15): 45-50. [22] 袁铁江, 李国军, 张增强, 等. 风电—氢储能与煤化工多能耦合系统设备投资规划优化建模[J]. 电工技术学报, 2016, 31(14): 21-30. Yuan Tiejiang, Li Guojun, Zhang Zengqiang, et al. Optimal modeling on equipment investment planning of wind power-hydrogen energy storage and coal chemical pluripotent coupling system[J]. Transactions of China Electrotechnical Society, 2016, 31(14): 21-30. [23] 胡国伟, 别朝红, 王锡凡. 考虑运行可靠性的含风电电力系统优化调度[J]. 电工技术学报, 2013, 28(5): 58-65. Hu Guowei, Bie Zhaohong, Wang Xifan. Optimal dispatch in wind integrated system considering operation reliability[J]. Transactions of China Electrotechnical Society, 2013, 28(5): 58-65. [24] 徐乾耀, 康重庆, 江长明, 等. 多时空尺度风电消纳体系初探[J]. 电力系统保护与控制, 2013, 41(1): 28-32. Xu Qianyao, Kang Chongqing, Jiang Changming, et al. Preliminary analysis on wind power accommodation system from multiple temporal and spatial scale perspective[J]. Power System Protection and Control, 2013, 41(1): 28-32. |
|
|
|