|
|
Flux Observer of Induction Motor Based on Polynomial Magnetic Saturation Model and EKF Algorithm |
LiuLu, WangXiaonian, Du Xudong |
College of Electronics and Information Engineering Tongji University Shanghai 201804 China |
|
|
Abstract Rotor flux is an important parameter in vector control of induction motor. The flux is usually estimated from measured three-phase current, which is often being influenced by noise. The accuracy of observer is related with motor parameters. If the flux level varies with motor working points, the nonlinear magnetic saturation effect will cause variation of mutual inductance. Then, the amplitude and position of rotor flux will deviate from real value, deteriorating the control performance. In this paper, observer algorithm for state estimation and parameter identification, based on extended Kalman Filter (EKF) and forth-order polynomial magnetic saturation model, is proposed. The stator current works as feedback, to correct the predicted value from induction motor model. The simulation and experimental results show the effectiveness of the proposed algorithm in reducing the influence of magnetic nonlinear effect on control system.
|
Received: 22 January 2017
Published: 10 November 2017
|
|
|
|
|
[1] 王成元, 夏加宽, 孙宜标. 现代电机控制技术[M]. 北京:机械工业出版社, 2013. [2] WasynczukO, Sudhoff S D, Corzine K A, et al. Amaximum torque per ampere control strategy forinduction motor drives[J]. IEEE Transactions on Energy Conversion, 1998, 13(2): 163-169. [3] Qu Zengcai, Ranta M, Hinkkanen M, et al. Loss-minimizing flux level control of induction motor drives[J]. IEEE Transactions on Industry Applications, 2012, 48(3): 952-961. [4] Grotstollen H, Wiesing J. Torque capability and control of a saturated induction motor over a wide range of flux weakening[J]. IEEE Transactions on Industrial Electronics, 1995, 42(4): 374-381. [5] Harnefors L. Design and analysis of general rotor-flux-oriented vectorcontrol systems[J]. IEEE Transactions on Industrial Electronics, 2001, 48(2): 383-390. [6] Kowalska T O, Dybkowski M. Stator-current-based MRAS estimator for a wide range speed-sensorless induction-motor drive[J]. IEEE Transactions on Industrial Electronics, 2010, 57(4): 1296-1308. [7] Yin Zhonggang, Zhang Yanqing, Du Chao, et al. Research on anti-error performance of speed and flux estimation for induction motors based on robust adaptive state observer[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3499-3510. [8] El Fadili A, Giri F, El Magri A, et al. Adaptive interconnected observer for induction machine in presence of nonlinear magnetic characteristic[C]// Proceedings of the 2011 American Control Conference, San Francisco, CA, 2011: 4916-4921. [9] Kim Y R, Sul S K, Park M H. Speed sensorless vector control of induction motor using extended kalmanfilter[J]. IEEE Transactions on Industry Applications, 1994, 30(5): 1225-1233. [10] Alonge F, Cangemi T, D’Ippolito F, et al. Convergence analysis of extended kalman filter for sensorless control of induction motor[J]. IEEE Transactions on Industrial Electronics, 2015, 62(4): 2341-2352. [11] 尹忠刚, 肖鹭, 孙向东, 等. 基于粒子群优化的感应电机模糊扩展卡尔曼滤波器转速估计方法[J]. 电工技术学报, 2016, 31(6): 55-65. Yin Zhonggang, Xiao Lu, Sun Xiangdong, et al. A speed estimation method of fuzzy extended Kalman filter for induction motors based on particle swarm optimization[J]. Transactions of China Electrotechnical Society, 2016, 31(6): 55-65. [12] 尹忠刚, 张延庆, 杜超, 等. 基于双辨识参数全阶自适应观测器的感应电机低速性能[J]. 电工技术学报, 2016, 31(20): 111-121. Yin Zhonggang, Zhang Yanqing, Du Chao, et al. Low-speed performance of sensorless vector control for induction motor based on two-parameter identified adaptive full-order observer[J]. Transactions of China Electrotechnical Society, 2016, 31(20): 111-121. [13] Gherram K, Yazid K, Menaa M. Sensorless indirect vector control of an induction motor by ANNs observer and EKF[C]//2010 18th Mediterranean Conference on Control & Automation (MED), Marrakech, Mororro, 2010: 521-526. [14] Toliyat H A, Levi E, Raina M. A review of RFO induction motor parameter estimation techniques[J]. IEEE Transactions on Energy Conversion, 2003, 18(2): 271-283. [15] Kim Ha-Yong, Shin Myoung-Ho, Hyun Dong-Seok.Improved vector control of an induction motor with on-line tuning of its parameters[C]//Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, Aachen, Germany,1998, 2: 854-858. [16] Raptis D S, Kladas A G, Tegopoulos J A. Accurate induction motor estimator based on magnetic field analysis[J]. IEEE Transactions on Magnetic, 2008, 44(6): 1574-1577. [17] Alonge F, Cirrincione M, D'Ippolito F, et al. Parameter identification of linear induction motor model in extended range of operation by means of input-output data[J]. IEEE Transactions on Industry Applications, 2014, 50(2): 959-972. [18] Chatterjee D. A novel magnetizing-curve identification and computer storage technique for induction machines suitable for online application[J]. IEEE Transactions on Industrial Electronics, 2011, 58(12): 5336-5343. [19] Levi E, Wang M. Online identification of the mutual inductance forvector controlled induction motor drives[J]. IEEE Transactions on Energy Conversion, 2003, 18(2): 299-305. [20] 李洪宇, 王群京, 李国丽,等. 基于扩展卡尔曼滤波器的电机参数辨识算法[J]. 电气工程学报, 2015, 10(5):34-42. Li Hongyu, Wang Qunjing, Li Guoli, et al. Electromagnetic parameter identification algorithm of AC motor based on extended Kalmanfilter[J]. Electrical Manufacturing, 2015, 10(5):34-42. [21] Torres B M A, Verde C. Real time parameters estimation of an induction motor[C]//IV IEEE International Power Electronics Congress, 1995: 29-32. [22] Ranta M, Hinkkanen M. Online identification of parameters defining the saturation characteristics of induction machines[J]. IEEE Transactions on Industry Applications, 2013, 49(5): 2136-2145. |
|
|
|