|
|
Analysis of Surface Discharge Characteristics of a Frequency Selective Metamaterial Based on Epoxy Resin under Lightning Pulse Voltage |
Zhao Yushun1,2, Zhang Hua1,2, Chen Weijiang3, Yang Xi1,2, Du Bin1,2 |
1. School of Electrical Engineering and Automation Hefei University of Technology Hefei 230009 China; 2. Anhui Provincial Aircraft Lightning Protection Key Laboratory Hefei 230031 China; 3. State Grid Corporation of China Beijing 100031 China |
|
|
Abstract Frequency selective metamaterial is an ideal enclosure material for stealth radomes. Owing a large number of periodic metal superstructure units in the material, the conventional lightning shielding method cannot protect metamaterial effectively. In this paper, firstly, a frequency selective metamaterial based on the epoxy resin substrate was prepared and morphology characteristics of discharge channels under lightning pulsed voltage were studied. Meanwhile, the parameter of angle factor was proposed and 50% surface flashover voltage was measured. Secondly, the regulation of surface discharge voltage to deviation angle was obtained using angle factor to evaluate insulation characteristics of metamaterial. The results show that the development of discharge channels is broken line and consist of two types of discharge paths. The first type of path is parallel to the periodic direction of the superstructure units, while the second type of path is along the direction at an angle of 45° between the path and the periodic direction of superstructure units. Further analysis shows that main channels of the metamaterial surface discharge occur along the path with the shortest total length of the insulation gap. As the angle between the periodic direction of superstructure units and the connecting line of high-low electrodes increases, surface flashover voltage first increases and then decreases. When the deviation angle is 0° or 45°, surface flashover voltage is lower, while when the deviation angle is 22.5°, the 50% surface flashover voltage is higher. The research results provide theoretical reference for lightning protection on metamaterial stealth radomes.
|
Received: 14 February 2017
Published: 30 October 2017
|
|
|
|
|
[1] Wang B, Nishino T, Teo K H, et al. Experiments on wireless power transfer with metamaterials[J]. Applied Physics Letters, 2011, 98(25): 254101. [2] 田子建, 陈健, 樊京, 等. 基于磁负超材料的无线电能传输系统[J]. 电工技术学报, 2015, 30(12): 1-11. Tian Zijian, Chen Jian, Fan Jing, et al. The wireless power transfer system with magnetic metama- terials[J]. Transactions of China Electrotechnical Society, 2015, 30(12): 1-11. [3] 刘强, 杨阳, 周海京, 等. MNZ超材料的电磁特性[J]. 强激光与电子束, 2015, 27(10): 103207. Liu Qiang, Yang Yang, Zhou Haijing, et al. Electromagnetic characteristics of MNZ meterial[J]. High Power Laser and Partical Beams, 2015, 27(10): 103207. [4] Su H L, Huang H C, Lin K H, et al. Gain-enhanced metamaterial radome for circularly-polarized antenna[C]//2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 2010: 1-4. [5] Oliveri G, Bekele E T, Salucci M, et al. Array miniaturization through QCTO-SI metamaterial radomes[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(8): 3465-3476. [6] 谢耀恒, 谷山强, 贺恒鑫. 正极性长间隙放电先导起始模型[J]. 高电压技术, 2014, 40(3): 756-762. Xie Yaoheng, Gu Shanqiang, He Hengxin, et al. Simplified physical model to determine leader inception for positive discharge in long air gaps[J]. High Voltage Engineering, 2014, 40(3): 756-762. [7] Kawakmi H. Lightning strike induced damage mechanisms of carbon fiber composites[D]. Washington: University of Washington USA, 2011. [8] 丁宁, 赵彬, 刘志强, 等. 复合材料层合板雷击烧蚀损伤模拟[J]. 航空学报, 2013, 34(2): 301-308. Ding Ning, Zhao Bin, Liu Zhiqiang, et al. Simulation of ablation damage of composite laminates sujected to lightning strike[J]. Acta Aeronautica et Astro- nautica Sinica, 2013,34(2): 301-308. [9] Ma Y, Chen Q, Grant J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Optics Letters, 2011, 36(6): 945-947. [10] Barakati A, Zhupanska O I. Influence of the electric current waveform on the dynamic response of the electrified composites[J]. International Journal of Mechanics and Materials in Design, 2013, 9(1): 11-20. [11] Feraboli P, Kawakami H. Damage of carbon/epoxy composite plates subjected to mechanical impact and simulated lightning strike[J]. Journal of Aircraft, 2010, 47(3): 999-1012. [12] 李克训, 赵亚丽, 江波, 等. 光学超材料的制备方法与参数提取[J]. 强激光与电子束, 2015, 27(10): 103233. Li Kexun, Zhao Yali, Jiang Bo, et al. Preparation method of optical metamaterials and parameter extraction[J]. High Power Laser and Partical Beams, 2015, 27(10): 103233. [13] Ma Y, Chen Q, Grant J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Optics Letters, 2011, 36(6): 945-947. [14] 丁玉剑, 张泽, 谢庆, 等. 基于电荷累积的棒-板间隙流注放电过程仿真[J]. 高电压技术, 2015, 41(12): 13-19. Ding Yujian, Zhang Ze, Xie Qing. et al. Fractal dynamic streamer discharge simulation of rod-plane air gap based on charge accumulation[J]. High Voltage Engineering, 2015, 41(12): 13-19. [15] 李辉, 李鑫涛, 徐建源, 等. 均匀电场下SF 6 /CF 4 流注放电数值模拟[J]. 高压电器, 2016, 51(12): 122- 127. Li Hui, Li Xintao, Xu Jianyuan, et al. Streamer discharge simulation of SF 6 /CF 4 in uniform electrical field[J]. High Voltage Apparatus, 2016, 51(12): 122-127. [16] 陈维江, 贺恒鑫, 钱冠军, 等. 基于长间隙放电研究雷电屏蔽问题的进展[J]. 中国电机工程学报, 2012, 32(10): 1-12. Chen Weijiang, He Hengxin, Qian Guanjun, et al. Review of the lightning shielding against direct lightning strokes based on laboratory long air gap discharges[J]. Proceedings of the CSEE, 2012, 32(10): 1-12. [17] 董曼玲, 姚帅, 寇小适, 等. 厘米级短间隙不均匀场正流注数值仿真分析[J]. 高压电器, 2015, 51(3): 122-128. Dong Manling, Yao Shuai, Kou Xiaoshi, et al. Numerical simulation of positive streamer in non-uniform electric field of centimeters gap[J]. High Voltage Apparatus, 2015, 51(3): 122-128. [18] 马宇飞, 张黎, 闫江燕, 等. 风机叶片雷击上行先导的起始物理机制与临界长度判据[J]. 中国电机工程学报, 2016, 36(21): 5975-5983. Ma Yufei, Zhang Li, Yan Jiangyan, et al. Inception mechanism of lightning upward leader from the wind turbine blade and a proposed critical length criterion[J]. Proceedings of the CSEE, 2016, 36(21): 5975-5983. [19] 郭小红, 朱永利, 陈旭, 等. 输电线路雷击组合测距新算法[J]. 电力系统保护与控制, 2016, 44(7): 7-12. Guo Xiaohong, Zhu Yongli, Chen Xu, et al. A new combined lightning locating algorithm for transmission lines[J]. Power System Protection and Control, 2016, 44(7): 7-12. [20] 余辉, 陈维江, 李国富, 等. 雷电上行先导模拟试验用新型冲击电压发生装置研究[J]. 中国电机工程学报, 2015, 35(24): 6543-6551. Yu Hui, Chen Weijiang, Li Guofu, et al. Research on the new impulse voltage generator for simulation experiment of upward lightning leader[J]. Pro- ceedings of the CSEE, 2015, 35(24): 6543-6551. [21] 罗日成, 李稳, 陆毅, 等. 基于Hilbert-Huang变换的1000kV 输电线路雷电绕击与反击识别方法[J]. 电工技术学报, 2015, 30(3): 232-239. Luo Richeng, Li Wen, Lu Yi, et al. Identification method of shielding failure and back striking over-voltage of 1000kV transmission line based on Hilbert-Huang transform[J]. Transactions of China Electrotechnical Society, 2015, 30(3): 232-239. [22] 詹花茂, 刘波, 颜廷利, 等. 操作冲击下空间电荷对间隙放电的影响[J]. 电工技术学报, 2014, 29(2): 212-218. Zhan Huamao, Liu Bo, Yan Tingli, et al. Influence of space charge on air gap discharge under switching impulse[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 212-218. [23] 王瑾, 冯振宇, 齐亮, 等. 民用飞机闪电分区适航验证技术研究进展[J]. 中国安全生产科学技术, 2011, 7(12): 97-102. Wang Jin, Feng Zhenyu, Qi Liang, et al. Progress in airworthiness compliance technology research on lightning zoning of civil aircraft[J]. Journal of Safety Science and Technology, 2011,7(12): 97-102. [24] Duan Zemin, Si Xiaoliang, Feng Jie, et al. Direct and indirect lightning tests to the Z11 helicopter radome in China[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2013, 20(4): 1112-1116. [25] Larsson A. The interaction between a lightning flash and an aircraft in flight[J]. Comptes Rendus Physique, 2002, 3(10): 1423-1444. [26] Uman M A, Rakov V A. The interaction of lightning with airborne vehicles[J]. Progress in Aerospace Sciences, 2003, 39(1): 61-81. [27] Li D M, Wang C, Liu X H. General time-domain formula for horizontal electric field excited by lightning[J]. IEEE Transactions on Electromagnetic Compatibility, 2011, 53(2): 395-400. |
|
|
|